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Abstract

The algebraic Bethe ansatz is one of the main approaches to solving integrable

models in statistical mechanics. This thesis is a detailed introduction to aspects of

this technique.

In chapter 1, following Takhtajan1, we fully explain all preliminaries that are re-

quired by this technique in the context of the 8-vertex model, including the solution

of the Yang-Baxter equations in terms of Boltzmann weights that are parameterized

by elliptic function.

In chapter 2, also following Takhtajan, we restrict our attention to the special

case of the 6-vertex model, with Boltzmann weights parameterized by hyperbolic

trigonometric functions, formulate the model in detail on a finite lattice with peri-

odic boundary conditions, and show how the algebraic Bethe ansatz can be used to

characterize the eigenvectors and eigenvalues, in the homogeneous case (all verti-

cal rapidities are equal, and all horizontal rapidities are also equal).

In chapter 3, following Bogoliubov et al2, we consider the 6-vertex model in in-

homogeneous case (all rapidities are now independenti variables) but with domain

wall boundary conditions.

Using the algebraic Bethe ansatz, and Izergin’s result for the partition function, we

calculate boundary 1-point functions of the six-vertex model on a finite lattice and

represent them in determinant form.

1Takhatajan, L. J. Introduction to Agebraic Bethe Ansatz, Lecture Notes in Physics, Exactly solv-

able problems in condensed matter and relativistic field theory
2 Boundary correlation functions of the six-vertex model J. Phys. A: Math. Gen. 35, 5525-5541

(2002)
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Chapter 1

Monodromy matrix and the
Quantum R-matrix

1.1 Vertex Models

In many applications of statistical mechanics particles are fixed or localized, which

means that kinetic energy can essentially be neglected. Instead, a material’s mag-

netic properties are determined by the angular momentum of the atoms’ electrons,

also known as ‘spin’. 1 We can represent these fixed models grahically. Accord-

ingly, this paper will use pictures in many proofs and to demonstrate ideas. It is

therefore important to have an understanding of what the pictures represent.

Vertices

The energy of an atom or a particle is often represented by a vertex. The energy of

these will depend on their spins, which we represent by 4 directed arrows, one on

each edge. Denoting an up or right arrow as +1 and a down or left arrow as −1,

we can represent the energy of an atom:
1Baxter, Rodney. J, Exactly Solved Models in Statistical Mechanics,
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εkl
ij =

j

l

i k eg : ε1,1
1,1 =

N

N

I I

As there are 4 edges, and each edge can adopt two possible states, there are 24 = 16

possible configurations / energies.

The Lattice

A lattice is similar to a vertex, but with more than one horizontal or vertical line,

and represents a group of atoms or particles bonded together. When arrows are

placed on the bonds, the lattice represents the total energy of that particular con-

figuration of vertices, where each vertex on the lattice represents the energy of an

atom. The total energy of the lattice is given by the sum of the energies of all the

vertices. A 2-Dimensional rectangular lattice would look like:

νN . . . ν3 ν2 ν1

λ1

λ2

λ3

...

λN

Where the labels νκ and λα can be seen, for now, as ‘co-ordinates’. For the atoms

to bond together, they must share a similar bond/arrow. For example:
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N
N

N
N

HN

NH

I I I J

I J J I

=

N H

N N

H N

I

I

J

I

J

I

Blank bonds and Combinations

As we often deal with many different configurations of arrows, rather than explic-

itly write them all out, we represent a sum over all configurations with blank bonds.

Each blank bond is a sum over a right and left arrow (or an up and down arrow).

For example:

N

N

=

N

N

J J

N

N

J I

N

N

I J

N

N

I I+ + +

Clearly, for N blank bonds, there will be 2N configurations.

Mutiplication of Vertices / Lattices

There are two possibilities for multiplication: where the vertical arrows specified,

and where the horizontal arrows specified. The idea is to connect similar arrows

and join them together.

Vertical Multiplication:

Multiplying vertices whose vertical bonds have been specified requires us to place

6



the right vertex on top of the left vertex, where the arrows on the top of the left

vertex are the same as the arrows on the bottom of the right vertex (so the first

vertex in the product lies on the bottom of the resulting lattice). For example

H

N

×

N

H

=

N

H

N

(the blank horizontal bonds still represent a sum over all configurations.) This can

be extended to lattices, provided the arrows on the top of the left lattice align with

the arrows at the bottom of the right lattice. For example:

N

N

H

N

× =

N

N

N

H
N N

N H

N N

Horizontal Multiplication:

Multiplication of horizontal bonds is much easier: we simply join them together,

just as they join together in the lattice: For example:

J I × I J = J I J

If a product of vertices cannot be joined by vertical or horizontal multiplication,

we must leave them as two separate sublattices. As a general rule, vertices/lattices

are not commutative under multiplication.
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1.2 The Partition Function

Let us consider an M × N rectangular lattice with periodic boundary conditions.

We can think of the edges in the lattice as forming a circle, where the arrows at the

top must point in the same direction as the corresponding arrows on the other side

of the lattice (similarly for the right and left). The M ×N rectangular lattice, can

be thought of as a two dimensional taurus. If each vertex configuration represents a

different energy εj , (j = 1 . . . 16), then each lattice configuration has a total energy

of:

E =
16∑

j=1

Njεj

Where Nj is the number of vertices with energy εj

The partition function, Z, is an important quantity in statistical mechanics. It en-

codes various properties of a system in thermodynamic equilibrium. Here, it can

be represented:

Z =
∑

e−βE . (1.2.1)

where we are summing over all possible configurations of the lattice. Given each

bond can have two arrow configurations, and there M × N bonds, the partition

function is the sum of the energies (E) of 2M×N terms. (Note that β = 1/kT ,

where T is the absolute temperature of the system in Kelvin (273K = 0oC) and

k = 1.3805× 10−23 is Boltzman’s constant.)

1.3 The Transfer Matrix

We can simplify Equation 1.2.1 by considering the Botlzmann weight of each ver-

tex configuration, vj = e−βεj , and arranging them in a matrix {Lα′
α (γ, γ′)}n,

where each entry of Ln represents the Boltzmann weight of a particular arrow

configuration, and the subscript n represents the horizontal position (νn) that we

want Ln to represent. Specify each entry of Ln as:
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α

α′

γ γ′Lα′
α (γ, γ′) =

and, as we did before, assign spin variable +1 to the arrows pointing up and to the

right and −1 to arrows down and to the left, so that:

N

N

I IL1
1(1, 1) = e−βε1,1

1,1 =

Then matrix Ln is:


L1

1(+1,+1) L1
−1(+1,+1) L−1

1 (+1,+1) L−1
−1(+1,+1)

L1
1(−1,+1) L1

−1(−1,+1) L−1
1 (−1,+1) L−1

−1(−1,+1)

L1
1(+1,−1) L1

−1(+1,−1) L−1
1 (+1,−1) L−1

−1(+1,−1)

L1
1(−1,−1) L1

−1(−1,−1) L−1
1 (−1,−1) L−1

−1(−1,−1)


n

We can represent Ln graphically as:
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N

N

I I

H

N

I I

N

N

I J

H

N

I J

N

H

I I

H

H

I I

N

H

I J

H

H

I J

N

N

J I

H

N

J I

N

N

J J

H

N

J J

N

H

J I

H

H

J I

N

H

J J

H

H

J J

=

(1.3.1)

Ln is an operator that acts in the space hn ≈ C2, where hn represents the n-

th ‘column’ of the lattice. This is explained in further detail in Section 2.1. For

simplicity, we will consider the homogeneous case where all Ln are equivalent

but act in different spaces. The inhomogenous case is considered in in Chapter 3.

Introducing {α} = {α1, α2, . . . , αN} and {α′} = {α′1, α′2, . . . , α′N}, we can define

matrix Tm, with elements:

T{α},{α′} =
∑
γ1

. . .
∑
γN

L
α′1
α1(γ1, γ2)L

α′2
α2(γ2, γ3) . . . L

α′N
αN (γN , γ1) (1.3.2)

Where m represents the λm that T corresponds to. As we are working in the

homogeneous case we are also assuming that all rows are equivalent: Tm ≈ T . We

we can represent T graphically as:

γ1 γ2

α1

α′1

LN

γ2 γ3

α2

α′2

LN−1

. . .
γN−1 γN

αN

α′2

L2

γN γ1

αN

α′N

L1
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Which we can represent as one lattice, that is equivalent to a row of the lattice at

λm.

. . .γ1 γ2 γ3 γ1

α1 α2 α3 αN

α′1 α′2 α′3 α′N

It is important to note the periodicity of T : the last horizontal arrow (γ1) is the

same as the first, ensuring that the N × 1 lattice is periodic in the horizontal direc-

tion.

Each entry of matrix T corresponds to a set of fixed {α1, α2, . . . , αN} and also

{α′1, α′2, . . . , α′N}, but a sum over all possible periodic configurations of γj . The

entry represents the Boltzmann weight of that 1×N lattice configuration. T can be

thought of as one‘ row’ from the original M ×N lattice. All ‘rows’ are equivalent

in the homogeneous case, as Tm ≈ T . As each of the N blank edges can have a

spin of ±1, matrix T will be 2N × 2N . For example, if N = 2, Matrix T would

be:

+ +

+

J J J J I J

I J I I I I

α′1 α′2

α1 α2

α′1 α′2

α1 α2

α′1 α′2

α1 α2

α′1 α′2

α1 α2

α′1 α′2

α1 α2

=

Specifying the values of {α1, α2}, {α′1, α′2} would give is the different entries of
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matrix T .

Now that we have defined T , we can express equation 1.2.1 as:

Z = Tr(TM ) (1.3.3)

Where Tr is the matrix trace.

Proof: Given that N is arbitrary, we will consider the case N = 2 for simplicity.

The proof can easily be generalized for larger values of N. The Transfer matrix, T ,

for N = 2 is:


T{+1,+1},{+1,+1} T{+1,+1},{+1,−1} T{+1,+1},{−1,+1} T{+1,+1},{−1,−1}

T{+1,−1},{+1,+1} T{+1,−1},{+1,−1} T{+1,−1},{−1,+1} T{+1,−1},{−1,−1}

T{−1,+1},{+1,+1} T{−1,+1},{+1,−1} T{−1,+1},{−1,+1} T{−1,+1},{−1,−1}

T{−1,−1},{+1,+1} T{−1,−1},{+1,−1} T{−1,−1},{−1,+1} T{−1,−1},{−1,−1}


(1.3.4)

Which can be represented graphically as:

N

N

N

N

N

N

H

N

H

N

N

N

H

N

H

N
N

N

N

H

N

N

H

H

H

N

N

H

H

N

H

H
N

H

N

N

N

H

H

N

H

H

N

N

H

H

H

N
N

H

N

H

N

H

H

H

H

H

N

H

H

H

H

H

(Note: given the periodicity requirement of T , we are really only summing over

periodic configurations of the horizontal bonds.) We eventually want TM , so we

12



first need T 2. If we let Tα,β represent the α-th row and β-th column of T , then

T 2
1,1, is:

× + ×

+ × + ×

N N N N N H N N

N N N N N N N H

H N N N H H N N

N N H N N N H H

= + + +

N N N N N N N N

N N N N N N N N

N N N H H N H H

=

N N

N N

We can find the other entries of T 2 the same way. T 2
1,2 is:

× + ×

+ × + ×

N N N H N H N H

N N N N N N N H

H N N H H H N H

N N H N N N H H

13



= + + +

N H N H N H N H

N N N N N N N N

N N N H H N H H

=

N H

N N

Doing this for all entries of T 2 gives:

T 2 =

N

N

N

N

N

N

H

N

H

N

N

N

H

N

H

N
N

H

N

N

N

N

H

H

H

N

N

H

H

N

H

H
N

H

N

N

N

H

H

N

H

H

N

N

H

H

H

N
N

H

N

H

N

H

H

H

H

H

N

H

H

H

H

H

Notice that all the arrows are configured identically to the original T matrix, only

each entry is a 2 × 2 lattice rather than a 2 × 1 lattice. Repeating this process M

times will give us a matrix with 2 ×M lattices as entries and the configuration of

the arrows will be identical to T and T 2. Thus, matrix TM can be represented:
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TM = ...
...

∨

∧

M

The periodic entries of TM will occur along the diagonal (as in T 2), which is

simply the trace of TM :

Trace(TM ) = ...
...

...
...

...
...

...
...

N N N H H N H H

N N N H H N H H

+ + +

Which is precisely what we wanted: the partition function, Z, for N = 2. This is

just the Boltmann weights of all periodic configurations of the 2×M lattice. The

same process can be easily generalized to cases of N > 2

�

Clearly, for computational purposes, the above is not an efficient process of finding

TM for large M or N . It would be much simpler if we could diagonalize T . The

way to do this is to introduce repidities in T which would allow us to diagonalize T

using the Yang-Baxter equation, as it requires non-trivial dependance of Boltzman

weights on rapidity variables.

1.4 The Monodromy Matrix M

Suppose we have two sets of Boltzman weights, vj and v′j , and the correspond-

ing transfer matrices T and T ′. We would like to know when T and T ′ com-

15



mute:

[T, T ′] = 0 (1.4.1)

To answer this question we need to introduce a 2× 2 matrix M , as an operator on

quantum space, with elements Mγ,γ′ :

. . .γ γ′

α1 α2 α3 αN

α′1 α′2 α′3 α′N

We can see that this is precisely the T matrix without the periodicity requirement.

M can be represented graphically as:

. . . . . .

. . .. . .

I I

J I

I J

J J

M =

For convenience we will represent M as:

M =

[
A B
C D

]
(1.4.2)

Given that only the diagonal entries of M are periodic, we can see that the transfer

martix, T , is simply the trace of M .

T = Tr(M) = A+D

16



If we think of hn as a horizontal line in the nth ‘column’ of the lattice, a product

of all N columns will give a ‘row’ of the lattice. As T and M represent ‘rows’ of

the lattice and therefore ‘act’ over all horizontal spaces:

VN =
N∏

n=1

⊗ hn , hn ≈ C2

Where the C means that the Boltzman weights may take complex values. (What

‘acts in its own space’ means is discussed in Section 2.1.)

Recall that we represent the the Boltzmann weights of all 16 configurations in

matrix (1.3.1). We can represent that 4× 4 Ln matrix as a 2× 2 matrix:

I I

J I

JI

JJ

Ln =

(1.4.3)

For convenience we will represent this as:

Ln =

[
αn βn

γn δn

]
(1.4.4)

As with Ln, αn, βn, γn, δn are operators in V which act non-trivially in hn. The

matrix Ln is called the Local L-Operator, and

M = LN . . . L1 =
N∏

n=1

Ln (1.4.5)

Proof: If we consider LN × LN−1:

17



LN × LN−1= × +I I I I I J J I×

= +I I I I J I

= I I

Repeating this for the other vertices, LN × LN−1 becomes:

I I

J I

JI

JJ

LN × LN−1 = =

Note that the arrows are fixed in precisely the same way as they were in(1.4.3),

only the 1 × 1 entries have become 1 × 2. This is very similar to the T matrix

proof. Repeating this N times, the entries of LN . . . L1 will become 1×N lattices,

and all arrow configurations will remain the same. This is precisely matrix M ,

which we call the Monodromy Matrix.

Note that while (1.4.5) appears to be identical to (1.3.2), the former has no restric-

tion on the boundaries of Ln. So M is identical to the T matrix only it does not

18



have any boundary conditions.

�

Getting back to the original problem: under what conditions will 1.4.1 be true? It

turns out that it is sufficient that:

R(M ⊗M ′) = (M ′ ⊗M)R (1.4.6)

Where R is some 4× 4 matrix over complex numbers (like Ln).

Proof: If we define tensor product as:

M ⊗M ′ =

[
AM ′ BM ′

CM ′ DM ′

]

Then (1.4.6) can be rewritten as:

M ⊗M ′ = R−1(M ′ ⊗M)R

Taking the trace of both sides gives:

Tr(M ⊗M ′) = Tr(R−1(M ′ ⊗M)R)

Using Tr(AB) = Tr(BA):

Tr(M ⊗M ′) = Tr(R−1(M ′ ⊗M)R)

= Tr(RR−1(M ′ ⊗M))

= Tr(M ′ ⊗M)

Now using Tr(A⊗B) = Tr(A)Tr(B) we have:

Tr(M)Tr(M ′) = Tr(M ′)Tr(M)

TT ′ = T ′T

[T, T ′] = 0

�
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Condition (1.4.6) can be even further simplified. Namely, to show (1.4.1) it is

sufficient to verify:

R(Ln ⊗ L′n) = (L′n ⊗ Ln)R (1.4.7)

(1.4.7) is known as the Yang-Baxter equation and will be used frequently in the

remainder of this thesis. To show (1.4.7), it is sufficient to prove (1.4.1). We will

provided two proofs: a graphical proof (the “Railroad Proof”) and a more formal

proof.

1.4.1 Railroad Proof

We can represent R(M ⊗M ′) = (M ′ ⊗M)R graphically as follows:

. . .

. . .�
�

�
�

�@
@

@
@

@

=

M ′

M

M

M ′

R

. . .

. . . �
�

�
�

�@
@

@
@

@M ′

M

M

M ′

R

Figure 1

(Note that the only way to represent the product of a single vertex (R) with a 2×N

lattice (M ⊗ M ) is to rotate the single vertex 45o clockwise and attach it to the

lattice (noting that they are non-commutative.) By the same reasoning we can

represent R(Ln ⊗ L′n) = (L′n ⊗ Ln)R, graphically as:
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�
�

�
�

�@
@

@
@

@L′n

Ln

=

�
�

�
�

�@
@

@
@

@ Ln

L′n

R R

Figure 2

Using Figure 2, the RHS of Figure 1 becomes:

. . .

. . . �
�

�
�

�@
@

@
@

@M ′

M

M

M ′

R

. . .

. . . �
�

�
�

�@
@

@
@

@

=

M ′

M

M

M ′

R

Applying this procedure N times gives:

. . .

. . .�
�

�
�

�@
@

@
@

@M ′

M

M

M ′

R
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Which is the RHS. This completes the railroad proof.

�

1.4.2 Formal Proof

Using 1.4.5 we can expand the LHS of 1.4.6 to:

R(M ⊗M ′) = R(LN , . . . , L1)⊗ (L′N , . . . , L′1)

= R(LN )(LN−1 . . . L1)⊗ (L′N )(L′N−1 . . . L′1)

Using the tensor product of algebras, AB⊗CD = (A⊗C)(B⊗D), gives:

R(M ⊗M ′) = R(Ln ⊗ L′n)(LN−1 . . . L1)⊗ (L′N−1 . . . L′1)

Now using R(LN ⊗ L′N ) = (L′N ⊗ LN )R gives:

R(M ⊗M ′) = (Ln ⊗ L′n)R(LN−1 . . . L1)⊗ (L′N−1 . . . L′1) (1.4.8)

Reiterating this process gives:

=(L′N ⊗ LN )R(LN−1)(LN−2 . . . L1)⊗ (L′N−1)(LN−2 . . . L′1)

=(L′N ⊗ LN )R(LN−1 ⊗ L′N−1)(LN−2 . . . L1)⊗ (LN−2 . . . L′1)

=(L′N ⊗ LN )(L′N−1 ⊗ LN−1)R(LN−2 . . . L1)⊗ (LN−2 . . . L′1)

Using the tensor product of algebras again simplifies the above to:

=(L′NL′N−1 ⊗ LNLN−1)R(LN−2 . . . L1)⊗ (LN−2 . . . L′1)
...

=(L′N , . . . , L′1)⊗ (LN , . . . , L1)R

=(M ′ ⊗M)R

�

In summary, to verify that [T, T ′] = 0, we need to verify R(Ln ⊗ L′n) = (L′n ⊗
Ln)R rather than R(M ⊗ M ′) = (M ′ ⊗ M)R. Our task now becomes solving

the Yang-Baxter equation which requires us to find an R matrix for our Boltzmann

weights.
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1.5 The 8-Vertex Model

So far we have been working with the 16-vertex model, as we have been consid-

ering the Boltzmann weights of all 16 vertex configurations. It turns out that no R

matrix has been found that will satisfy the Yang-Baxter equation for the 16-vertex

model 2, so we can no longer proceed with such generality. Instead, we shall con-

sider the 8-vertex model, in which we only consider 8 vertices and set the weights

of the rest to be zero. Assign the following configurations weight a, b, c or d:

I I

N

N

J J

H

H
a

I I

H

H

J J

N

N
b

I J

N

H

J I

H

N
c

J I

N

H

I J

H

N
d

There are three important observations to make here:

1. All weights are invariant under reversion of arrows;

2. a, b and c have two arrows going ‘in’ and two arrows going ‘out’, which we

can think of as conservation of arrow flow; and

3. All configuration that do not have two arrows going ‘in’ and two arrows

going ‘out’ (except for d) are deemed to have zero weight.

The Local Operator (or weight) matrices, Ln and L′n, become:

2Takhatajan, L. J. Introduction to Agebraic Bethe Ansatz, Lecture Notes in Physics, Exactly solv-

able problems in condensed matter and relativistic field theory, 180
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Ln =

[
α β

γ δ

]
n

=


a 0 0 d

0 b c 0

0 c b 0

d 0 0 a


n

L′n =

[
α′ β′

γ′ δ′

]
n

=


a′ 0 0 d′

0 b′ c′ 0

0 c′ b′ 0

d′ 0 0 a′


n

To solve equation (1.4.7) we need to find an R matrix that will satisfy it for all

possible Ln and L′n. Let’s try an R matrix of the form:

R = PL′′n (1.5.1)

Where P is the permutation matrix in C4 that satisfies

P (e⊗ f) = f ⊗ e

Specifically:

P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


Which gives us:

R =


a′′ 0 0 d′′

0 c′′ b′′ 0

0 b′′ c′′ 0

d′′ 0 0 a′′


Let a′′, b′′, c′′ and d′′ be our new variables. If we substitute Ln and R into equation

(1.4.7) the RHS becomes:
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(L′n ⊗ Ln)R =

[
α′ β′

γ′ δ′

]
⊗

[
α β

γ δ

]
a′′ 0 0 d′′

0 c′′ b′′ 0

0 b′′ c′′ 0

d′′ 0 0 a′′



=


α′α α′β β′ α β′β

α′γ α′δ β′γ β′δ

γ′α γ′β δ′α δ′β

γ′γ γ′δ δ′γ δ′δ




a′′ 0 0 d′′

0 c′′ b′′ 0

0 b′′ c′′ 0

d′′ 0 0 a′′



=


α′α(a′′) + β′β(d′′) α′β(c′′) + β′α(b′′) α′β(b′′) + β′α(c′′) α′α(d′′) + β′β(a′′)

α′γ(a′′) + β′δ(d′′) α′δ(c′′) + β′γ(b′′) α′δ(b′′) + β′γ(c′′) α′γ(d′′) + β′δ(a′′)

γ′α(a′′) + δ′β(d′′) γ′β(c′′) + δ′α(b′′) γ′β(b′′) + δ′α(c′′) γ′α(d′′) + δ′β(a′′)

γ′γ(a′′) + δ′δ(d′′) γ′δ(c′′) + δ′γ(b′′) γ′δ(b′′) + δ′γ(c′′) γ′γ(d′′) + δ′δ(a′′)


The LHS of (1.4.7) becomes:

R(Ln ⊗ L′n) =


a′′ 0 0 d′′

0 c′′ b′′ 0

0 b′′ c′′ 0

d′′ 0 0 a′′


[

α β

γ δ

]
⊗

[
α′ β′

γ′ δ′

]

=


a′′ 0 0 d′′

0 c′′ b′′ 0

0 b′′ c′′ 0

d′′ 0 0 a′′




αα′ αβ′ β α′ ββ′

αγ′ αδ′ βγ′ βδ′

γα′ γβ′ δα′ δβ′

γγ′ γδ′ δγ′ δδ′



=


(a′′)αα′ + (d′′)γγ′ (a′′)αβ′ + (d′′)γδ′ (a′′)βα′ + (d′′)δγ′ (a′′)ββ′ + (d′′)δδ′

(c′′)αγ′ + (b′′)γα′ (c′′)αδ′ + (b′′)δα′ (c′′)βγ′ + (b′′)γβ′ (c′′)βδ′ + (b′′)δβ′

(b′′)αγ + (c′′)γα′ (b′′)αδ′ + (c′′)δα′ (b′′)βγ′ + (c′′)γβ′ (b′′)βδ′ + (c′′)δβ′

(d′′)αα′ + (a′′)γγ′ (d′′)αβ′ + (a′′)γδ′ (d′′)βα′ + (a′′)δγ′ (d′′)ββ′ + (a′′)δδ′


Equating the LHS and RHS gives 16 equations. We must then expand out α, β, γ

and δ in each of the 16 equations and see what we get. The equations in the first

row of the first column gives:
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α′α(a′′) + β′β(d′′) = (a′′)αα′ + (d′′)γγ′

[
a′ 0

0 b′

][
a 0

0 b

]
a′′ +

[
0 d′

c′ 0

][
0 d

c 0

]
d′′ =

a′′

[
a 0

0 b

][
a′ 0

0 b′

]
+ d′′

[
0 c

d 0

][
0 c′

d′ 0

]

a′′

[
aa′ 0

0 bb′

]
+ d′′

[
d′c 0

0 c′d

]
= a′′

[
aa′ 0

0 bb′

]
+ d′′

[
cd′ 0

0 dc′

]

Which gives us four equations, two of which state 0 = 0. The two we are interested

in are:

a′′a′a + d′′d′c = a′′a′a + d′′d′c

a′′b′b + d′′c′d = a′′b′b + d′′c′d

We can see immediately the equivalence of the LHS and RHS in both equations,

which gives 0 = 0. Thus, the first of the 16 equations tells us nothing. Let’s try the

second entry of the first column.

α′γ(a′′) + β′δ(d′′) = (c′′)αγ′ + (b′′)γα′

[
a′ 0

0 b′

][
0 c

d 0

]
a′′ +

[
0 d′

c′ 0

][
b 0

0 a

]
d′′ =

c′′

[
a 0

0 b

][
0 c′

d′ 0

]
+ b′′

[
0 c

d 0

][
a′ 0

0 b

]

a′′

[
0 a′c

b′d 0

]
+ d′′

[
0 d′a

c′b 0

]
= c′′

[
0 ac′

bd′ 0

]
+ b′′

[
0 cb′

da′ 0

]

Which gives us the two linearly independent equations (say, set A):

a′′a′c + d′′d′a = c′′c′a + b′′b′c

a′′b′d + d′′c′b = c′′d′b + b′′da′
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The third row of the first column gives:

γ′α(a′′) + δ′β(d′′) = (b′′)αγ′ + (c′′)γα′

[
0 c′

d′ 0

][
a 0

0 b

]
a′′ +

[
b′ 0

0 a′

][
0 d

c 0

]
d′′ =

b′′

[
a 0

0 b

][
0 c′

d′ 0

]
+ c′′

[
0 c

d 0

][
a′ 0

0 b

]

a′′

[
0 c′b

d′a 0

]
+ d′′

[
0 b′d

a′c 0

]
= b′′

[
0 ac′

bd′ 0

]
+ c′′

[
0 cb′

da′ 0

]

This too gives two linearly independent equations (say, set B):

a′′c′b + d′′b′d = b′′c′a + c′′b′c

a′′d′a + d′′a′c = b′′d′b + c′′a′d

The fourth row of the first column gives:

γ′γ(a′′) + δ′δ(d′′) = (d′′)αα′ + (a′′)γγ′

[
0 c′

d′ 0

][
0 c

d 0

]
a′′ +

[
b′ 0

0 a′

][
b 0

0 a

]
d′′ =

d′′

[
a 0

0 b

][
a′ 0

0 b′

]
+ a′′

[
0 c

d 0

][
0 c′

d′ 0

]

a′′

[
c′d 0

0 d′c

]
+ d′′

[
b′b 0

0 a′a

]
= d′′

[
a′a 0

0 b′b

]
+ a′′

[
cd′ 0

c′d 0

]

The two equations are identical, so we have one more equation (say, equation

C):

a′′c′d + d′′b′b = d′′a′a + a′′d′c

The second row of the second column gives:

α′γ(c′′) + β′γ(b′′) = (c′′)αδ′ + (b′′)δα′
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[
a′ 0

0 b′

][
b 0

0 a

]
c′′ +

[
0 d′

c′ 0

][
0 c

d 0

]
b′′ =

c′′

[
a 0

0 b

][
b′ 0

0 a′

]
+ b′′

[
0 c

d 0

][
0 d′

c′ 0

]

c′′

[
a′b 0

0 b′a

]
+ b′′

[
d′d 0

0 cc′

]
= c′′

[
ab′ 0

0 ba′

]
+ b′′

[
cc′ 0

0 dd′

]

Again the two equations are identical, giving us the equation (say, equation D):

c′′a′b + b′′d′d = c′′a′b + b′′c′c

Fortunately out of the 32 equations, only these 6 are linearly independent. They

are distributed in the 4× 4 matrix as follows:


0 B A C

A D 0 B

B 0 D A

C A B 0


(Note the symmetry down the diagonal of this distribution.) Our six linearly inde-

pendent equations are therefore:

ca′a′′ + ad′d′′ = cb′b′′ + ac′c′′ (1.5.2)

ba′c′′ + dd′b′′ = ab′c′′ + cc′b′′ (1.5.3)

bc′a′′ + db′d′′ = ac′b′′ + cb′c′′ (1.5.4)

da′b′′ + bd′c′′ = db′a′′ + bc′d′′ (1.5.5)

aa′d′′ + cd′a′′ = bb′d′′ + dc′a′′ (1.5.6)

ad′a′′ + ca′d′′ = bd′b′′ + da′c′′ (1.5.7)

If we want a non-trivial solution for a′′, b′′, c′′ and d′′ we should be able to choose

any four of these equations, put them in a matrix and require that the determinant

vanishes (otherwise an inverse will exist and all solutions will be zero). If we

choose the first, third, fourth and sixth equations the determinant can be found to

be (using Mathematica):

(abc′d′ − cda′b′)[(a2 − b2)(c′2 − d′2) + (c2 − d2)(a′2 − b′2)] (1.5.8)
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Which we require to be zero. If all transfer matrices, T and T ′, are to commute

we know that when a′ = a, b′ = b, c′ = c and d′ = d that T will be a member of

the commuting matrices and satisfy (1.4.6), and the determinant will also vanish.

This may not be essential, there may be another a, b, c and d that satisfy the second

factor of (1.5.8) and also satisfy the commuting family, however, the second factor

will give a much more complicated relation between the primed and unprimed

variables; we are only interest in finding a solution, not all solutions. In this case,

the fist factor of the determinant will vanish, but the second will not. So our new

condition is:

abc′d′ − cda′b′ = 0

abc′d′ = cda′b′

cd

ab
=

c′d′

a′b′
(1.5.9)

If we now solve for the first, third fourth and sixth equations by eliminating each

variable (a′′, b′′, c′′ and d′′) and then substituting the expression into another (i.e.

solving simultaneous equations), using (1.5.9) (and equivalently abc′d′ = a′b′cd)

we can simplify our expressions for the variables to:

a′′ = a′(cc′ − dd′)(b′2c2 − c′2a2)/c′

b′′ = b′(cd′ − dc′)(a′2c2 − a′2a2)/d′

c′′ = c′(bb′ − aa′)(a′2c2 − a′2a2)/a′

d′′ = d′(a′b− b′a)(b′2c2 − c′2a2)/b′

Substituting these into either the second or the fifth equation gives:

a2 + b2 − c2 − d2

ab
=

a′2 + b′2 − c′2 − d′2

a′b′
(1.5.10)

If we define

∆ =
a2 + b2 − c2 − d2

2(ab + cd)
∆′ =

a′2 + b′2 − c′2 − d′2

2(a′b′ + c′d′)

Then we can rewrite (1.5.10) in terms of ∆ ,as:

∆2(ab + cd)
(ab)

=
∆′2(a′b′ + c′d′)

(a′b′)
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which we can rewrite as:

∆(1 +
cd

ab
) = ∆′(1 +

c′d′

a′b′
)

Using (1.5.9):

∆ = ∆′

Now define

Γ = (ab− cd)/(ab + cd) Γ′ = (a′b′ − c′d′)/(a′b′ + c′d′)

We can easily show Γ = Γ′;

cd

ab
=

c′d′

a′b′

1− cd

ab
= 1− c′d′

a′b′

ab− cd

ab
=

a′b′ − c′d′

a′b′
(1.5.11)

ab =
(ab− cd)a′b′

a′b′ − c′d′
(1.5.12)

Subbing (1.5.12) into (1.5.11) gives:

(cd + ab)(a′b′ − c′d′)
(ab− cd)a′b′

=
a′b′ + c′d′

a′b′

ab + cd

ab− cd
=

a′b′ + c′d′

a′b′ − c′d′

Γ = Γ′

What this means is that our transfer matrices are ensured to commute if they have

the same values of ∆ and Γ.

1.6 Parameterization Using Jacobi’s Elliptic Functions

Our next step is to parameterize a, b, c and d in terms of four new variables; γ, u, k

and λ. If we let:

γ = (1− Γ)/(1 + Γ) = cd/ab
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We can eliminate d as follows:

2∆(ab + cd) = a2 + b2 − c2 − d2

2∆ab(1 +
cd

ab
) = a2 + b2 − c2 − d2(

a2b2c2

a2b2c2
)

2∆(1 + γ)ab = a2 + b2 − c2 − a2b2γ2c−2

If we then divide through by c2 we have:

2∆(1 + γ)(a/c)(b/c) = (a/c)2 + (b/c)2 + (a/c)2(b/c)2γ2 − 1

This can be rewritten as a quadratic with a/c as our variable.

(a/c)2(1− γ2(b/c)2)− 2∆(1 + γ)(b/c)(a/c) + (b/c)2 − 1 = 0

The discriminant of this quadratic (without the factor of 4) is:

∆2(1 + γ)2(b/c)2 − [(b/c)2 − 1][1− γ2(b/c)2] (1.6.1)

which is a quadratic in (b/c)2 and can be rewritten:

(1− y2(b/c)2)(1− k2y2(b/c)2)

where

k2y4 = γ2 (1.6.2)

(1 + k2)y2 = 1 + γ2 −∆2(1 + γ)2 (1.6.3)

We can now parameterize this equation using elliptic functions by making the sub-

stitution:

(b/c) = y−1sn(iλ, k) (1.6.4)

Where sn(λ,k) denotes elliptic sine of modulus k. The reason for using i in the

argument will soon become clear. We can now solve for (a/c) using the quadratic

formula:

(a/c) =
2∆(1 + γ)(b/c)±

√
4(1− y2(b/c)2)(1− k2y2(b/c)2)

2(1− γ2(b/c)2
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=
∆(1 + γ) 1

y sn(iλ)±
√

(1− sn2(iλ))(1− k2sn2(iλ)

1− γ2

y2 sn2(iλ)

using the elliptic identities:

cn2(u) + sn2(u) = 1

dn2(u) + k2sn2(u) = 1

(a/c) becomes:

(a/c) =
∆(1 + γ) 1

y sn(iλ)±
√

(cn2(iλ)dn2(iλ)

(1− γ2

y2 sn2(iλ)

=
y[∆(1 + γ)sn(iλ) + ycn(iλ)dn(iλ)]

y2 − γ2sn2(iλ)

This equation can be simplified further by defining:

ksn(iu) = −γ

y
(1.6.5)

Then we get from Equation (1.6.2):

k2y2 = (
γ

y
)2 (1.6.6)

= (−ksn(iu))2

= k2sn2(iu)

⇒ y = sn(iu) (1.6.7)

Equation (1.6.5) gives:

γ = −yksn(iu) (1.6.8)

⇒ γ = −ksn2(iu) (1.6.9)
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Equations (1.6.3) and (1.6.7) give:

∆2 =
−1

(1 + γ)2
((1 + k2)y2 − 1− γ2)

=
−1

(1− ksn2(iu))
((1 + k2)sn2(iu)− 1− k2sn4(iu))

=
1

(1− ksn2(iu))
(1 + k2sn4(iu)− sn2(iu)− k2sn2(iu))

=
1

(1− ksn2(iu))
(1− sn2(iu))(1− k2sn2(iu))

⇒ ∆ =
−1

(1− ksn2(iu))
cn(iu)dn(iu)

Where we have taken the negative square root of ∆ for physical reasons. Now that

we have ∆, y and γ we can simplify our expression for (a/c)

(a/c) =
y[∆(1 + γ)sn(iλ) + ycn(iλ)dn(iλ)

y2 − γ2sn(iλ)

=
sn(iu)[ (−cn(iλ)dn(iλ))

1−ksn2(iu)
(1− k2sn(iu)) + sn(iu)cn(iλ)dn(iλ)]

sn2(iu)(1− k2sn2(iu)sn2(iλ))

=
1

sn(iu)
sn(iu)cn(iλ)dn(iλ)− cn(iu)dn(iu)sn(iλ)

1− k2sn2(iu)sn2(iλ)

Using the identity 3:

sn(u− v) =
sn(u)cn(v)dn(v)− cn(u)dn(u)sn(v)

1− k2sn2(u)sn2(v)

(a/c) becomes:

(a/c) =
1

sn(iu)
× sn(i(u− λ))

We can also use our new expressions for y to simplify (b/c):

(b/c) = y−1sn(iλ)

=
sn(iλ)
sn(iu)

3Baxter, Rodney. J, Exactly Solved Models in Statistical Mechanics, (Academic Press, 1982),

463
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Now we can find an expression for (d/c) using :

γ =
cd

ab
ab

c2
γ = c/d

(a/c)(b/c)γ = d/c

d/c =
sn(i(u− λ))

sn(iu)
× sn(iλ)

sn(iu)
×−k2sn2(iu)

⇒ (d/c) = −ksn(i(u− λ))sn(iλ)

We now have three ratios for a, b, c and d.

a/c =
sn(i(u− λ))

sn(iu)
(1.6.10)

b/c =
sn(iλ)
sn(iu)

(1.6.11)

d/c = −ksn(i(u− λ))sn(iλ) (1.6.12)

Using the hyperbolic elliptic sine, defined by:

snh(u) = −isn(iu) = isn(−iu) u ∈ R, 0 < k < 1

we can simplify our ratios to:

a/c =
snh(u− λ)

snh(u)

b/c =
snh(λ)
snh(u)

d/c = ksnh(u− λ)snh(λ)

We can now solve a, b, c and d up to a normalization factor ρ

a = ρsnh(u− λ)

b = ρsnh(λ)

c = ρsnh(u)

d = ρksnh(u)snh(λ)snh(u− λ)

34



Now we have now parameterized a, b, c and d in terms of ρ, λ, u and k. (a, b, c and

d can be further defined using theta functions. We will not use these, as they are

quite complicated, do not simplify the problem and are therefore unnecessary for

our purposes.)

Keeping k, ρ and u fixed, we can regard the transfer matrix, T , as a function of λ,

T (λ), and our commuting Transfer matrix, T ′ as a function of µ, that is: T ′ →
T (µ). We can now express 1.4.1 as:

T (λ)T (µ) = T (µ)T (λ)

This implies:

L → L(λ) L′ → L(µ)

1.7 Relation Between λ, µ and η

Equations (1.5.2) - (1.5.7) are unaltered when we swap the primed and double

primed variables (1 → 1, 2 → 3, 3 → 2, 4 → 4, 5 → 6, 6 → 5 ). Therefore, the

relation we found between the primed and unprimed variables should be identical

to the relation between the unprimed and double-primed variables. Thus:

Γ = Γ′ = Γ′′ ∆ = ∆′ = ∆′′

Given that ∆ and Γ only depend on k and u, we should be able to parameterize

our new variables, a′′, b′′, c′′ and d′′, in terms of k, u and some new variables, say

η and ρ′. Rewriting (1.5.2) as:

c(a′a′′ − b′b′′) = a(c′c′′ − d′d′′)
1

cc′c′′
c(a′a′′ − b′b′′) =

1
cc′c′′

a(c′c′′ − d′d′′)

(
a′

c′
a′′

c′′
− b′

c′
b′′

c′′
) =

a

c
(1− d′

c′
d′′

c′′
)

Using (1.6.10) - (1.6.12)

sn(u− µ)
sn(u)

sn(u− η)
sn(u)

− sn(µ)
sn(u)

sn(η)
sn(u)

=
sn(u− λ)

sn(u)
(1− (−k)sn(u− µ)sn(u)(−k)sn(u− η)sn(u))
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Canceling the sn(u) gives:

sn(u− µ)sn(u− η)− sn(µ)sn(η)
sn(u)

= sn(u− λ)(1− k2sn(u− µ)sn(u)sn(u− η)sn(u))

Which becomes:

sn(u− µ)sn(u− η)− sn(µ)sn(η)
1− k2sn(u− µ)sn(u)sn(u− η)sn(u)

=sn(u− λ)sn(u)

Using the identity 4:

sn(a− u)sn(a− v)− sn(u)sn(v)
1− k2sn(u)sn(v)sn(a− u)sn(a− v)

= sn(a)sn(a− u− v)

our equation becomes:

sn(u)sn(u− µ− η) =sn(u)sn(u− λ)

sn(u− µ− η) =sn(u− λ)

u− µ− η =u− λ

η =λ− µ

It turns out that the parameter for the double primed variables depends on the pa-

rameters of the unprimed and primed variables! We can now write (1.4.6) as:

R(λ− µ)(Ln(λ)⊗ Ln(µ)) = (Ln(µ)⊗ Ln(λ))R(λ− µ)

This is the solution to the Yang-Baxter equation.

4Baxter, Rodney. J, Exactly Solved Models in Statistical Mechanics, (Academic Press, 1982),

463
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Chapter 2

Algebraic Bethe Ansatz in
“abc-form”

2.1 Triangularizing M

We have solved the Yang-Baxter equation and have the conditions required for

the transfer matrix T to lie in a commuting family T (λ). Now we will start the

procedure for diagonalization of T . For simplicity we will consider the 6-vertex

case, where d = 0. This is known as the ‘ice-rule’, 1 and is equivalent to letting

k → 0, so that snh(u) → sinh(u) and our elliptic functions become trigonometric

ones. If we take ρ = 1 and ρ′ = 1 for simplicity:

a = sinh(u− λ) (2.1.1)

b = sinh(λ) (2.1.2)

c = sinh(u) (2.1.3)

d = 0 (2.1.4)

It is important to see that c is independent of the repidities, but still depends on

the crossing parameter, u. Nonetheless, we will keep the argument of c in our

calculations.
1We can think of the lattice as a block of H20 atoms. Each vertex represents an oxygen atom anf

the directed arrows represent the sharing of a hydrogen atom. An in arrow represents taking half a

hydrogen atom from a neighbour, an out arrow represents the giving of half an hydrogen atom to a

neighbour.
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Considering Ln as a 2 × 2 matrix, there exists a vector wn =

(
1

0

)
n

such that

operator Ln acting on wn becomes upper triangular. That is:

Ln⊗̂wn =

[
αn βn

γn δn

]
⊗

[
1

0

]
n

=


(

a 0

0 b

)(
1

0

) (
0 0

c 0

)(
1

0

)
(

0 c

0 0

)(
1

0

) (
b 0

0 0

)(
1

0

)


n

=


a 0

0 c

0 b

0 0


n

=


a

(
1

0

)
∗

0 b

(
1

0

)


n

=

[
a(λ)wn ∗

0 b(λ)wn

]

We represent the top right matrix entry with an asterix as its value is not re-

quired.

For the graphical proof, we must interpret wn as placing an up-arrow on the top

edge of a vertex. This is best illustrated graphically:
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Ln⊗̂wn =

I I I J

J I J J

⊗̂ . . . . . . . . .
...

...

...
N

=

I I

N

I J

N

J I

N N

J J

The notation ⊗̂ treats the 2× 2 matrix Ln is operating on line a constant, which is

why we may bring it inside the matrix.

In the 6-vertex model, the bottom left configuration does not satisfy the conser-

vation of arrow flow and is zero. However, we will continue to consider it for

completeness. If we now sum each entry over all configurations of the bottom

edge our matrix becomes:
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=

N

N

I I

N

N

I J

N

H

I I

N

H

I J

N

N

J I

N

N

J J

N

H

J I

N

H

J J

Recalling that a configuration that does not have two arrows in and two arrows out

is assigned a weight of zero, the matrix becomes:

=


a 0

0 c

0 b

0 0


=

[
a(λ)wn ∗

0 b(λ)wn

]

Aside

At this point it should be clear what is meant by ‘operating on’. Ln acts on vectors

vn (which must lie in the same space; hence vn and not vm) and produces a partic-

ular arrow configuration, restricting the values the vertices may take. If Ln acts on

four well defined vectors it will produce a particular vertex configuration from Ln.
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The vectors, specifying right, left, up and down arrows, etc, are defined:

Top N = ⊗̂

[
1

0

]

Top H = ⊗̂

[
0

1

]
Bottom N =

[
1 0

]
⊗̂

Bottom H =
[

0 1
]
⊗̂

Right I =

[
1

0

]

Right J =

[
0

1

]
Left I =

[
1 0

]
Left J =

[
0 1

]
Again, ⊗̂ works lets Ln in the form of a 2× 2 matrix treat the vector as a constant

and bring it to the matrix, only then to operate under normal matrix multiplication.

For example, if we wanted to finish with a c vertex, we would need Ln to operate

the following vectors:

[
1 0

] ([
0 1

]
⊗̂
)

Ln

(
⊗̂

[
1

0

])[
0

1

]

As the matrices lie in different spaces, they are commutative on each side and Ln

may act on them in any order. Starting by specifying the top edge as an up arrow:
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
a 0 0 0

0 b c 0

0 c b 0

0 0 0 a


n

⊗̂

[
1

0

]
n

=


(

a 0

0 b

)(
1

0

) (
0 0

c 0

)(
1

0

)
(

0 c

0 0

)(
1

0

) (
b 0

0 0

)(
1

0

)


n

=


a 0

0 c

0 b

0 0


n

=

[
α

δ

]
n

Specify the bottom edge as a down arrow

[
0 1

]
n
⊗̂


a 0

0 c

0 b

0 0


n

=


(

0 1
)( a 0

0 c

)
(

0 1
)( 0 b

0 0

)


n

=

[
0 c

0 0

]
n

Specify the left edge as a right arrow

[
1 0

]
n

[
0 c

0 0

]
n

=
[

0 c
]
n
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Finally, specify the right edge as top edge as left arrow

[
0 c

]
n

[
0

1

]
n

= c

It is worth noting that trying to specify two different arrows at the same position

will result in an undefined matrix multiplication, such as Mmn × Npq where n 6=
p.

Graphically, the operator Ln can be thought of as starting with representation

(1.3.1), and after each operation (specifying an edge and arrow direction) we re-

move from (1.3.1) all the entries that do not have the property that vn specifies. For

example, in the first operation in the above example we removed all vertices that

did not have an up arrow on the top.

�

The point is that when operator Ln acts on wn, the result is upper triangular! We

call vector wn the local vacuum. Given wn makes Ln upper trianglar, we would

expect there to exist a vector that has the same effect on the monodromy matrix

M(λ). Such a vector does exist and it is:

Ω =
N∏

n=1

⊗wn ∈ VN

Ω can be thought of as N ‘up’ arrows for top edges. Similarly with wn, the ar-

rows do not lie on a lattice, but are operated on by blank lattices. Ω is called the

‘reference state’, and M(λ) acts on on Ω to give:

M(λ)Ω =

[
aNΩ ∗
0 bNΩ

]

Proof: Because Ln may only act on its own space (for example, L3 cannot operate
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on w2), we can rearrange the order of multiplication as follows:

MΩ =
N∏

n=1

Ln(λ)
N∏

n=1

⊗wn

=
N∏

n=1

⊗Ln(λ)wn

= L1w1 ⊗ L2w2 ⊗ . . .⊗ LNwn

=

[
a(λ)w1 ∗

0 b(λ)w1

]
⊗

[
a(λ)w2 ∗

0 b(λ)w2

]
⊗ . . .⊗

[
a(λ)wN ∗

0 b(λ)wN

]
using the rule for multiplication of triangular matrices

=

[
a(λ)w1 ⊗ a(λ)w2 ⊗ . . .⊗ a(λ)wN ∗

0 b(λ)w1 ⊗ b(λ)w2 ⊗ . . .⊗ b(λ)wN

]

=

[
aN (λ)w1 ⊗ w2 ⊗ . . .⊗ wN ∗

0 bN (λ)w1 ⊗ w2 ⊗ . . .⊗ wN

]

=

[
aN (λ)Ω ∗

0 bN (λ)Ω

]

Graphically, the proof is very similar to triangularizing Lnwn, only the Ω ‘freezes’

the top row of the A lattice to give the aN (λ) and the top row of the D lattice

bN (λ).

�

Recalling that T = trace(M) we can see:

T (λ)Ω = (A(λ) +D(λ))Ω

= (aN (λ) + bN (λ))Ω

Thus, Ω is the eigenvector of the T matrix and a(λ)N + b(λ)N is the eigenvalue.

This is the ansatz in ‘Bethe ansatz’: The assumption that this procedure generates

all eigenvectors. This is not very clear in the limit N →∞.

Now we wish to construct other eigenvectors of T (λ). To do this we make use of

(1.4.6):

R(λ− µ)(M(µ)⊗M(λ) = (M(λ)⊗M(µ)R(λ− µ)
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
a(λ− µ) 0 0 0

0 c(λ− µ) b(λ− µ) 0

0 b(λ− µ) c(λ− µ) 0

0 0 0 a(λ− µ)


[
A(λ) B(λ)

C(λ) D(λ)

]
⊗

[
A(µ) B(µ)

C(µ) D(µ)

]

=

[
A(µ) B(µ)

C(µ) D(µ)

][
A(λ) B(λ)

C(λ) D(λ)

]
⊗


a(λ− µ) 0 0 0

0 c(λ− µ) b(λ− µ) 0

0 b(λ− µ) c(λ− µ) 0

0 0 0 a(λ− µ)


(Aside: Equation 1.4.6 tells us R is only defined up to a constant, α:

R(M ⊗M ′) = (M ′ ⊗M)R

αR′(M ⊗M ′) = (M ′ ⊗M)αR′

R′(M ⊗M ′) = (M ′ ⊗M)R′

Thus, if R solves the Yang-Baxter equation, so does R′. Accordingly, at this point,

some authors choose to divide through by a, b or c, so that there are only 2 variables

(say, b/a = δ and c/a = γ). As this does not significantly simplify the equations,

for now we will continue using the same variables.)

Equating the LHS and RHS we get 16 equations. For convenience we will de-

fine:

a(λ− µ) = aλ,µ b(λ− µ) = bλ,µ c(λ− µ) = cλ,µ

Which gives us:


aλ,µ 0 0 0

0 cλ,µ bλ,µ 0

0 bλ,µ cλ,µ 0

0 0 0 aλ,µ




A(λ)A(µ) A(λ)B(µ) B(λ)A(µ) B(λ)B(µ)

A(λ)C(µ) A(λ)D(µ) B(λ)C(µ) B(λ)D(µ)

C(λ)A(µ) C(λ)B(µ) D(λ)A(µ) D(λ)B(µ)

C(λ)C(µ) C(λ)D(µ) D(λ)C(µ) D(λ)D(µ)



=


A(µ)A(λ) A(µ)B(λ) B(µ)A(λ) B(µ)B(λ)

A(µ)C(λ) A(µ)D(λ) B(µ)C(λ) B(µ)D(λ)

C(µ)A(λ) C(µ)B(λ) D(µ)A(λ) D(µ)B(λ)

C(µ)C(λ) C(µ)D(λ) D(µ)C(λ) D(µ)D(λ)




aλ,µ 0 0 0

0 cλ,µ bλ,µ 0

0 bλ,µ cλ,µ 0

0 0 0 aλ,µ


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When these are expanded out, they give 16 equations. These are

aλ,µA(λ)A(µ) = A(µ)A(λ)aλ,µ (2.1.5)

aλ,µA(λ)B(µ) = A(µ)B(λ)cλ,µ + B(µ)A(λ)bλ,µ (2.1.6)

aλ,µB(λ)A(µ) = A(µ)B(λ)bλ,µ + B(µ)A(λ)cλ,µ (2.1.7)

aλ,µB(λ)B(µ) = B(µ)B(λ)aλ,µ (2.1.8)

cλ,µA(λ)C(µ) + bλ,µC(λ)A(µ) = A(µ)C(λ)aλ,µ (2.1.9)

cλ,µA(λ)D(µ) + bλ,µC(λ)B(µ) = A(µ)D(λ)cλ,µ + B(µ)C(λ)bλ,µ (2.1.10)

cλ,µB(λ)C(µ) + bλ,µD(λ)A(µ) = A(µ)D(λ)bλ,µ + B(µ)C(λ)cλ,µ (2.1.11)

cλ,µB(λ)D(µ) + bλ,µD(λ)B(µ) = B(µ)D(λ)aλ,µ (2.1.12)

bλ,µA(λ)C(µ) + cλ,µC(λ)A(µ) = C(µ)A(λ)aλ,µ (2.1.13)

bλ,µA(λ)D(µ) + cλ,µC(λ)B(µ) = C(µ)B(λ)cλ,µ +D(µ)A(λ)bλ,µ (2.1.14)

bλ,µB(λ)C(µ) + cλ,µD(λ)A(µ) = C(µ)B(λ)bλ,µ +D(µ)A(λ)cλ,µ (2.1.15)

bλ,µB(λ)D(µ) + cλ,µD(λ)B(µ) = D(µ)B(λ)aλ,µ (2.1.16)

aλ,µC(λ)C(µ) = C(µ)C(λ)aλ,µ (2.1.17)

aλ,µC(λ)D(µ) = C(µ)D(λ)cλ,µ +D(µ)C(λ)bλ,µ (2.1.18)

aλ,µD(λ)C(µ) = A(µ)D(λ)cλ,µ + B(µ)C(λ)bλ,µ (2.1.19)

aλ,µD(λ)D(µ) = D(µ)D(λ)aλ,µ (2.1.20)

Where the first four equations correspond to the first row, the second four to the

second row, etc. Three of these equations are of particular imprtance to us.

Equation number (2.1.8) gives:

a(λ− µ)B(λ)B(µ) = B(µ)B(λ)a(λ− µ)

B(λ)B(µ)− B(µ)B(λ) = 0

[B(λ),B(µ)] = 0 (2.1.21)

Equation number (2.1.7) gives:

A(µ)B(λ)b(λ− µ) + B(µ)A(λ)c(λ− µ) = a(λ− µ)B(λ)A(µ)

Rearranging the equation and making the substitution µ → λ and λ → µ gives:

A(λ)B(µ) =
a(µ− λ)
b(µ− λ)

B(µ)A(λ)− c(µ− λ)
b(µ− λ)

B(λ)A(µ) (2.1.22)
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Equation (2.1.12) gives:

b(λ− µ)D(λ)B(µ) + c(λ− µ)B(λ)D(µ) = B(µ)D(λ)a(λ− µ)

Which after some rearranging gives:

D(λ)B(µ) =
a(λ− µ)
b(λ− µ)

B(µ)D(λ)− c(λ− µ)
b(λ− µ)

B(λ)D(µ) (2.1.23)

The real importance of these equations is what they represent graphically: (2.1.21)

tells us that that a product of B operators is invariant under an argument (i.e. λ and

µ) change:

. . .

. . . λ

µ
= . . .

. . . µ

λ

I J I J

I J I J

This will become important shortly. (2.1.22) tells us that we can swap an A and

a B operator, but by doing so, we must multiply the result by a constant and add

another lattice with the arguments changed. So A moves up the lattice in in both

terms but the arguments are swapped in the second term. Graphically:

. . .

. . . λ

µ
=

a(µ−λ)
b(µ−λ) × . . .

. . . µ

λ

− c(µ−λ)
b(µ−λ) × . . .

. . .

µ

λ

I J I I

I I I J

I I

I J

Equation (2.1.23) tells us exactly the same about the D operator as (2.1.22) told us

about theA operator, only the arguments of the constants have been swapped.

Equations (2.1.5)-(2.1.20) can also be derived graphically. This is done by consid-

ering (1.4.6):

R(x− y)(M(y)⊗M(x)) = (M(x)⊗M(y))R(x− y) (2.1.24)
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If we expanded this out graphically, each matrix entry corresponds to an arrow

configuration at each end. For example:

�
�

�
�@
@

x y

y x

I J

I J
=

�
�

�
�@
@

x y

y x

I J

I J

Where the arrows are the same on each end, only the R matrix has passed through.

Now we sum over all combinations of bonds. This may seem like a big task, but

by recognizing that the only non-zero configurations occur when the R vertex has

two arrows ‘in’ and two arrows ‘out’, we only need to sum over, at most, two

configurations of R. In this example, the R vertex on the LHS has two ‘in’ arrows,

so we can ‘freeze’ two of them to be ‘out’ arrows. The RHS R vertex also has two

in arrows. So we can freeze the R vertex to have to out arrows:

�
�

�
�@
@

x y

y x

I J

I J

I

I
=

�
�

�
�@
@

x y

y x

I J

I J

J

J

Rotating the R vertices 45o anti-clockwise reveals them to be a-vertices, so that

this particular configuration becomes:

a(x− y)B(x)B(y) =B(y)B(x)a(x− y)

B(x)B(y) =B(y)B(x)

Which is equation (2.1.21). Repeating this process for all 16 configuration of outer

arrows will give us (2.1.5)-(2.1.12).
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2.2 Eigenvectors of T

By successive application of operators B(λ) to the reference state, Ω, we can show

that:

T (λ)Φ = [A(λ) +D(λ)]Φ

= Λ(λ)Φ

Where the eigenvector, Φ, of T (λ) is:

Φ({λj}) =
l∏

j=1

B(λj)Ω (2.2.1)

and the eigenvalue, Λ(λ), of T (λ) is:

Λ(λ;λ1, . . . , λl) = aN (λ)
l∏

j=1

a(λj − λ)
b(λj − λ)

+ bN (λ)
l∏

j=1

a(λ− λj)
b(λ− λj)

The proof of this statement involves three steps:

1. Construct A(λ)Φ and convincing ourselves that:

A(λ)Φ = aN (λ)
l∏

j=1

a(λj − λ)
b(λj − λ)

Φ− aN (λk)
N∑

k=1

c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

Φk

= M(λ)Φ +
l∑

k=1

Mk(λ)

and that a similar expression exists forD(λ)Φ: (= N(λ)Φ+
∑N

k=1 Nk(λ));

2. Proving by induction that the answer we have constructed is indeed the cor-

rect one;

3. Using the ‘Bethe’ equation to prove that Mk + Nk = 0

2.2.1 Construction of A(λ)Φ

Consider the action of A(λ) on Φ.

A(λ)Φ = A(λ)B(λ1)B(λ2) . . . B(λl)Ω

Recalling that when multiplying vertices the product goes from the bottom to the

top, we can represent this product graphically as:
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...
...

...
...

...
...

...
...

I J
I J

I J
I J
I J
I I

N N N N N N N N

A(λ)
B(λ1)
B(λ2)
B(λ3)

B(λl−1)
B(λl)
Ω

Figure 3

Using the equation (2.1.22), we can move A(λ) up one position on the lattice.

Doing this then gives us two lattices, each multipled by a constant. The arguments

will reman in the first term and swap in the second. Figure 3 becomes:

a(λ1−λ)
b(λ1−λ) ×

...
...

...
...

...
...

...
...

I J
I J

I J
I J
I I
I J

N N N N N N N N

B(λ1)
A(λ)
B(λ2)
B(λ3)

B(λl−1)
B(λl)
Ω

c(λ1−λ)
b(λ1−λ) ×−

...
...

...
...

...
...

...
...

I J
I J

I J
I J
I I
I J

N N N N N N N N

B(λ)
A(λ1)
B(λ2)
B(λ3)

B(λl−1)
B(λl)
Ω
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The aim is to apply this procedure over and over and get all A(λ;λj) to the top.

At first it looks as though we will need 2l terms. However, this is not the case; we

can combine it into l + 1 terms as follows: the first term has A(λ) at the top, and

all the B’s preserve their arguments (λj); the second term λ1 is missing from the

argument of B and A(λ1) is at the top; a third with the λ2 argument missing and

A(λ2) on top, etc. Thus our l + 1 terms are:

A(λ)Φ = M(λ; {λj})Φ +
l∑

k=1

Mk(λ; {λj})Φk

Where {λj} is some combination of λj , j = 1, 2 . . . l and

Φk(λ; {λj}) =
l∏

j=1, j 6=k

B(λj)B(λ)Ω (2.2.2)

That is, Φ with a B(λj) replaced by B(λ), as the λj is in the argument of A. Our

task now is to discover the coefficients M and Mk. We can easily see that the

fist coefficient, M , is obtained by continuously taking the first term of (2.1.22),

essentially passing A(λ) throught the whole lattice without changing its argument.

This gives:

M = aN (λ)
l∏

j=1

a(λj − λ)
b(λj − λ)

The aN term comes from the top of the lattice as follows: When A finally reaches

the top, regardless of its argument, it is a product with Ω. There is only one possible

non-zero arrow configuration at the top, so the top row’s arrows are essentially

frozen into place. That is:

B(λ1)B(λ2) . . .B(λl)A(λ)Ω =
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...
...

...
...

...
...

...
...

I I
I J

I J
I J
I J
I J

N N N N N N N N

B(λ1)
B(λ2)
B(λ3)
B(λ4)

B(λl)
A(λ)
Ω

The top two rows look like:

I I
I J

N N N N N N N N

B(λl)
A(λ)
Ω

Notice that the top right vertex has two out arrows; so the only non-zero configu-

ration for it is two in arrows which will make it an a-vertex:

I I
I J

I
N

N N N N N N N N

B(λl)
A(λ)
Ω

Now the vertex to the left of the a-vertex has two outwards arrows, so it must also

be fixed as an a-vertex. It turns out that the entire top row must be a-vertices. As

a lattice’s weight is the product of its vertex weights, and there are N columns in

the lattice, the top row must be aN ! Our lattice becomes:

I I
I J

I
N

I
N

I
N

I
N

I
N

I
N

I
N N

N N N N N N N N

B(λl)
A(λ)
Ω

Figure 4
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= aN× I J
NNNNNNN N

B(λl)
Ω

Which can be expressed in an equation as:

B(λ)A(µ)Ω = aNB(λ)Ω

Hence,

B(λ1)B(λ2) . . .B(λN )A(λ)Ω = aNB(λ1)B(λ2) . . .B(λN )Ω

Now let’s find M1. The only way to obtain Φ1 this is to swap the first two terms

and then push A(λ1) all the way through, i.e. take the second term in 2.1.22 and

then keep taking the first terms:

M1 = −aN (λ1)
c(λ1 − λ)
b(λ1 − λ)

l∏
j=2

a(λj − λ1)
b(λj − λ1)

To obtain the co-efficents Mk for k ≥ 2 it appears that we will need to combine

many terms. However, instead we can use the following trick: use the commu-

tativity of B to put B(λk) in first place (all combinations/arrangements of B(λk)

are equivalent to this) and THEN take the second term of (2.1.22) and push A(λj)

all the way through. If λk is in first place, this is the only way to obtain it. That

is:

A(λ)B(λ1)B(λ2) . . .B(λN )Ω = A(λ)B(λk)B(λ1) . . .B(λN )Ω

Because the LHS should have the same co-efficient for Φk as the RHS and there is

one way to obtain Φk on the RHS:

Mk = −aN (λk)
c(λk − λ)
b(λk − λ)

N∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

So that:

A(λ)Φ = aN (λ)
l∏

j=1

a(λj − λ)
b(λj − λ)

Φ−
l∑

k=1

aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

Φk

(2.2.3)
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The exact same process can be applied to D(λ)Φ to give:

D(λ)Φ = N(λ; {λj})Φ +
l∑

k=1

Nk(λ; {λj})Φk

Where {λj} is some combination of λj , j = 1, 2 . . . l, and

N = bN (λ)
l∏

j=1

a(λ− λj)
b(λ− λj)

Nk = −bN (λk)
c(λ− λk)
b(λ− λk)

l∏
j=1,j 6=k

a(λk − λj)
b(λk − λj)

2.2.2 Proof by Induction

Although the first proof is sufficient, it can be hard to follow. To remove any doubt

about it’s correctness, we will prove (2.2.3) by induction.

To do this we need to make use of another of the Yang-Baxter equations. Con-

sider second of our Yang Baxter equations (2.1.20)and the case N = 1 (i.e. one

horizontal line so the entries of M become single vertices):

�
�

�
�@
@

x y

y x

I J

I I
= �

�
�

�@
@

x y

y x

I J

I I

There is only one possible non-zero arrow configuration for the LHS and two for

the RHS. Which freezes them to:

�
�

�
�@
@

x y

y x

I J

I I

I

I

N

H

H

= �
�

�
�@
@

x y

y x

I J

I I

I

J

N

N

H

+ �
�

�
�@
@

x y

y x

I J

I I

J

I

N

H

H

54



Giving us the equation:

a(y − x)b(y)c(x) = c(x)a(y)b(y − x) + b(x)c(y)c(y − x) (2.2.4)

As these are single vertices, they are all constants (a = sinh(u−λ), b = sinh(λ), etc)

and are therefore commutative.

Aside Some authors choose to label the vertical line as a z-axis and represent this

equation using slightly different notation:

a(y, x)c(x, z)b(y, z) = a(y, z)c(x, z)b(y, x)b(y, x) + c(y, z)b(x, z)c(y, x)

where a(x, y) = a(x− y) = a(vertical axis, horizontal axis). However, this is not

appropriate for our notayion.

Base Case: l = 2

We wish to show that the expansion given by (2.2.3) is correct:

A(λ)B(λ1)B(λ2)Ω =aN (λ)
a(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ)
b(λ2 − λ)

B(λ1)B(λ2)Ω

− aN (λ1)
c(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ2)Ω

− aN (λ2)
c(λ2 − λ)
b(λ2 − λ)

a(λ1 − λ2)
b(λ1 − λ2)

B(λ)B(λ1)Ω

This can be proved by expanding A(λ)B(λ1)B(λ2) using (2.1.22):

A(λ)B(µ) =
a(µ− λ)
b(µ− λ)

B(µ)A(λ)− c(µ− λ)
b(µ− λ)

B(λ)A(µ) (2.2.5)

So that we get:

A(λ)B(λ1)B(λ2) = [
a(λ1 − λ)
b(λ1 − λ)

B(λ1)A(λ)− c(λ1 − λ)
b(λ1 − λ)

B(λ)A(λ1)]B(λ2)

=
a(λ1 − λ)
b(λ1 − λ)

B(λ1)A(λ)B(λ2)−
c(λ1 − λ)
b(λ1 − λ)

B(λ)A(λ1)B(λ2)

=
a(λ1 − λ)
b(λ1 − λ)

B(λ1)[
a(λ2 − λ)
b(λ2 − λ)

B(λ2)A(λ)− c(λ2 − λ)
b(λ2 − λ)

B(λ)A(λ2)]

− c(λ1 − λ)
b(λ1 − λ)

B(λ)[
a(λ2 − λ1)
b(λ2 − λ1)

B(λ2)A(λ1)−
c(λ2 − λ1)
b(λ2 − λ1)

B(λ1)A(λ2)]

Using the commutativity of B:

a(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ)
b(λ2 − λ)

B(λ1)B(λ2)A(λ)− a(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ)
b(λ2 − λ)

B(λ)B(λ1)A(λ2)−

c(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ2)A(λ1) +
c(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ1)A(λ2)
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Collecting the second and fourth terms gives:

a(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ)
b(λ2 − λ)

B(λ1)B(λ2)A(λ)− c(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ2)A(λ1)−

[
a(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ)
b(λ2 − λ)

− c(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ1)
b(λ2 − λ1)

]B(λ)B(λ1)A(λ2)

(2.2.6)

The coefficient of the third term:

a(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ)
b(λ2 − λ)

− c(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ1)
b(λ2 − λ1)

(2.2.7)

can be expanded to:

a(λ1 − λ)c(λ2 − λ)b(λ2 − λ1)− c(λ1 − λ)c(λ2 − λ1)b(λ2 − λ)
b(λ2 − λ1)b(λ2 − λ)b(λ1 − λ)

(2.2.8)

At this point we must make use of some properties of our vertices: the anti-

symmetry of b (b(−x) = −b(x)) and the fact that c is not dependent on its ar-

gument (c(x) = c(y)). This allows us to rearrange (2.2.8) as:

−[a(λ1 − λ)c(λ− λ2)b(λ1 − λ2)− c(λ1 − λ)c(λ1 − λ2)b(λ− λ2)]
−b(λ1 − λ2)b(λ2 − λ)b(λ1 − λ)

=
a(λ1 − λ)c(λ− λ2)b(λ1 − λ2)− c(λ1 − λ)c(λ1 − λ2)b(λ− λ2)

b(λ1 − λ2)b(λ2 − λ)b(λ1 − λ)
(2.2.9)

Where we have swapped both the arguments of b in the numerator, two c’s in the

numerator and one b in the denominator. Using our Yang-Baxter equation (2.2.4)

we can rewrite the numerator of (2.2.9) as:

a(λ1 − λ)c(λ− λ2)b(λ1 − λ2)− c(λ1 − λ)c(λ1 − λ2)b(λ− λ2)

= a(λ1 − λ2)c(λ2 − λ)b(λ1 − λ)

by making the substitutions, y − x → λ1 − λ, λ − λ2 → x and λ1 − λ → y. So
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that (2.2.9) becomes:

a(λ1 − λ2)c(λ2 − λ)b(λ1 − λ)
b(λ1 − λ2)b(λ2 − λ)b(λ1 − λ)

=
a(λ1 − λ2)c(λ2 − λ)
b(λ1 − λ2)b(λ2 − λ)

Subbing this back into (2.2.6) gives:

A(λ)B(λ1)B(λ2) =
a(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ)
b(λ2 − λ)

B(λ1)B(λ2)A(λ)

− c(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ2)A(λ1)

− a(λ1 − λ2)c(λ2 − λ)
b(λ1 − λ2)b(λ2 − λ)

B(λ)B(λ1)A(λ2)

And:

A(λ)B(λ1)B(λ2)Ω =aN (λ)
a(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ)
b(λ2 − λ)

B(λ1)B(λ2)Ω

− aN (λ1)
c(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ2)Ω

− aN (λ2)
c(λ2 − λ)
b(λ2 − λ)

a(λ1 − λ2)
b(λ1 − λ2)

B(λ)B(λ1)Ω

As required. This proves the base case.

Inductive Step

Assume the following is true for l:

A(λ)Φ = aN (λ)
l∏

j=1

a(λj − λ)
b(λj − λ)

Φ +
l∑

k=1

aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

Φk

Now we’ll try and show it’s true for l + 1. Using (2.2.5):

A(λ)Φ = A(λ)B(λ1)B(λ2) . . .B(λl+1) = A(λ)B(λ1)
l+1∏
j=2

B(λj)

= [
a(λ1 − λ)
b(λ1 − λ)

B(λ1)A(λ)− c(λ1 − λ)
b(λ1 − λ)

B(λ)A(λ1)]
l+1∏
j=2

B(λj)

=
a(λ1 − λ)
b(λ1 − λ)

B(λ1)×A(λ)
l+1∏
j=2

B(λj)−
c(λ1 − λ)
b(λ1 − λ)

B(λ)×A(λ1)
l+1∏
j=2

B(λj)

(2.2.10)
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Using the inductive step to evaluate A(λ)
∏l+1

j=2 B(λj):

A(λ)
l+1∏
j=2

B(λj)Ω =aN (λ)
l+1∏
j=2

a(λj − λ)
b(λj − λ)

l+1∏
j=2

B(λj)Ω

+
l+1∑
k=2

aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=2,j 6=k

a(λj − λk)
b(λj − λk)

l+1∏
j=2

B(λj)Ω

Note that
∏l+1

j=2 B(λj) is equivalent to
∏l

i=1 B(λi) by the substitution j − 1 = i.

Using exactly the same process we can evaluate A(λ1)
∏l+1

j=2 B(λj):

A(λ1)
l+1∏
j=2

B(λj)Ω =aN (λ1)
l+1∏
j=2

a(λj − λ1)
b(λj − λ1)

l+1∏
j=2

B(λj)Ω

+
l+1∑
k=2

aN (λk)
c(λk − λ1)
b(λk − λ1)

l∏
j=2,j 6=k

a(λj − λk)
b(λj − λk)

l+1∏
j=2

B(λj)Ω

Subbing these into (2.2.10) and expanding gives:

A(λ)B(λ1)
l+1∏
j=2

B(λj)Ω =

a(λ1 − λ)
b(λ1 − λ)

B(λ1)× aN (λ)
l+1∏
j=2

a(λj − λ)
b(λj − λ)

l+1∏
j=2

B(λj)Ω

− a(λ1 − λ)
b(λ1 − λ)

B(λ1)×
l+1∑
k=2

aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=2,j 6=k

a(λj − λk)
b(λj − λk)

l+1∏
j=2

B(λj)Ω

− c(λ1 − λ)
b(λ1 − λ)

B(λ)× aN (λ1)
l+1∏
j=2

a(λj − λ1)
b(λj − λ1)

l+1∏
j=2

B(λj)Ω

+
c(λ1 − λ)
b(λ1 − λ)

B(λ)×
l+1∑
k=2

aN (λk)
c(λk − λ1)
b(λk − λ1)

l∏
j=2,j 6=k

a(λj − λk)
b(λj − λk)

l+1∏
j=2

B(λj)Ω

Using the commutativity of B, moving constants into the sum and collecting the

second and fourth term gives:
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A(λ)B(λ1)
l+1∏
j=2

B(λj)Ω = aN (λ)
l+1∏
j=1

a(λj − λ)
b(λj − λ)

l+1∏
j=1

B(λj)Ω

− aN (λ1)
c(λ1 − λ)
b(λ1 − λ)

l+1∏
j=2

a(λj − λ1)
b(λj − λ1)

Φ1

−
l+1∑
k=2

aN (λk)[
a(λ1 − λ)
b(λ1 − λ)

c(λk − λ)
b(λk − λ)

− c(λ1 − λ)
b(λ1 − λ)

c(λk − λ1)
b(λk − λ1)

]

×
l∏

j=2,j 6=k

a(λj − λk)
b(λj − λk)

l+1∏
j=2

B(λ)B(λj)Ω (2.2.11)

Using the Yang-Baxter equation (2.2.4) the coefficient of the third term can be

simplified exactly the same way as we simplified (2.2.7) by letting λ2 → λk, giv-

ing:

a(λ1 − λ)
b(λ1 − λ)

c(λk − λ)
b(λk − λ)

− c(λ1 − λ)
b(λ1 − λ)

c(λk − λ1)
b(λk − λ1)

=
a(λ1 − λk)
b(λ1 − λk)

c(λk − λ)
b(λk − λ)

The third term of (2.2.11) becomes:

l+1∑
k=2

aN (λk)
a(λ1 − λk)
b(λ1 − λk)

c(λk − λ)
b(λk − λ)

l∏
j=2,j 6=k

a(λj − λk)
b(λj − λk)

Φk

=
N+1∑
k=2

aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

Φk

So that (2.2.11) becomes:

A(λ)
l+1∏
j=1

B(λj)Ω = aN (λ)
l+1∏
j=1

a(λj − λ)
b(λj − λ)

l+1∏
j=1

B(λj)Ω

− aN (λ1)
c(λ1 − λ)
b(λ1 − λ)

l+1∏
j=2

a(λj − λ1)
b(λj − λ1)

Φ1

−
l+1∑
k=2

aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

Φk

Noting that the second term is equivalent to a k = 1 term in the sum, we can

simplify this to:
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A(λ)
l+1∏
j=1

B(λj) = aN (λ)
l+1∏
j=1

a(λj − λ)
b(λj − λ)

Φ

−
l+1∑
k=1

aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

Φk

As required. This completes the proof by induction. A similar procedure can prove

D(λ)Φ = (N + Nk)Φ.

2.2.3 Bethe Equations

At this point we have

T (λ)Φ = (A+D)Φ (2.2.12)

= (M + N)Φ +
l∑

k=1

(Mk + Nk)Φk (2.2.13)

To make the above an eigenvector equation, we wish for the second term to become

zero. Consider

Mk + Nk = −aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

− bN (λk)
c(λk − λ)
b(λ− λk)

l∏
j=1,j 6=k

a(λk − λj)
b(λk − λj)

Because b(λ) is antisymmetric (sinh(−x) = − sinh(x) or b(x − y) = −b(y −
x)), and c is independent of λ, then c(λ−λk)

b(λ−λk) = −c(λk−λ)
b(λk−λ) allows us to rewrite the

coefficient of the second product:

Mk + Nk = −aN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λj − λk)
b(λj − λk)

+ bN (λk)
c(λk − λ)
b(λk − λ)

l∏
j=1,j 6=k

a(λk − λj)
b(λk − λj)

=
−c(λk − λ)
b(λk − λ)

(aN (λk)
l∏

j=1,j 6=k

a(λj − λk)
b(λj − λk)

− bN (λk)
l∏

j=1,j 6=k

a(λk − λj)
b(λk − λj)

)

(2.2.14)

The ‘Bethe Equation’ can be expressed 2:

aN (λk)
bN (λk)

=
l∏

j=1,j 6=k

b(λj − λk)
a(λj − λk)

× a(λk − λj)
b(λk − λj)

k = 1, 2, 3, . . . , l.

2Takhatajan, L. J. Introduction to Agebraic Bethe Ansatz, Lecture Notes in Physics, Exactly solv-

able problems in condensed matter and relativistic field theory, 187
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Or,

aN (λk)
l∏

j=1,j 6=k

a(λj − λk)
b(λj − λj)

= bN (λk)
l∏

j=1,j 6=k

a(λk − λj)
b(λk − λj)

Which we can substitute into (2.2.14) to get

Mk + Nk =
−cλk − λ)
b(λk − λ)

(bN (λk)
l∏

j=1,j 6=k

a(λk − λj)
b(λk − λj)

− bN (λk)
l∏

j=1,j 6=k

a(λk − λj)
b(λk − λj)

)

=0

We have just proved:

Mk(λ, {λj}) + Nk(λ, {λj}) = 0

for k = 1, 2, . . . , l

Using this we can simplify equation (2.2.13)

T (λ)Φ = (M(λ) + N(λ))Φ (2.2.15)

Provided that the horizontal rapidity variables {µj} satisfy the Bethe equations for

all j = 1, . . . , l the eigenvalues of the transfer matrix are given by M + N =

Λ(λ, {λj}), and the vector Φ({λj}), is really the eigenvector of T (λ).

2.3 Diagonalization of T

At this point we are able to diagonalize T using elementary linear algebra tech-

niques. We can create a diagonal matrix D, consisting of the eigenvalues of

T (Λ(λ, {λj})) along the diagonal, and a matrix P , with the eigenvectors of T

(Φ({λj})) as columns.

D = P−1TP

Then we can easily compute TM as follows:
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TM = (PDP−1)M

= PDP−1PDP−1PDP−1 . . . PDP−1

= PD(I)D(I)D(I) . . . DP−1

= PDMP−1

given that powers of diagonal matrixces are simple to calculate, we have just

compted TM which was our aim! “This procedure for the diagonalization of

commuting familiy of transfer matrices is called Algebraic Bethe Ansatz (in the

simplest abc-form).”3

Now that we have the partition function Z, we can go ahead and compute vari-

ous physical quantities, such as the bulk correlation functions. Bulk correlation

functions are beyond the scope of this thesis. Instead, we will consider a simpler

application: we will use the elements of the monodromy matrix M to give an ex-

plicit expression, in terms of determinants, for the boundary 1-point function, in

the presence of domain wall boundary conditions.

3Takhatajan, L. J. Introduction to Agebraic Bethe Ansatz, Lecture Notes in Physics, Exactly solv-

able problems in condensed matter and relativistic field theory, 190
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Chapter 3

Boundary Correlation Functions
of the Six Vertex-Model

3.1 New Notation

The field of vertex models is widely researched and many papers are published in

this area. Accordingly, a variety of notations are used. For the rest of this thesis

we will use different notation to what we have used in the past two chapters. The

changes are easily incorporated into all previous working, and also give a broader

insight into this field.

3.1.1 Spaces

So far we have been working in the spaces V and hn. We will now represent these

as:

ωn =

(
1

0

)
n

= | ↑ 〉n

Ω =
N∏

k=1

⊗wn =
N∏

n=1

⊗| ↑〉 = | ⇑ 〉

This new notation is graphically much clearer. A single up arrow in column n is

simply represented by an arrow! N up arrows are represented by a solid arrow.
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The rest of the spaces discussed in section 2.1 become:

〈↑ |α ∈ V Defines an right arrow on the α-th left edge

〈↓ |α ∈ V Defines a left arrow on the α-th left edge

〈↑ |κ ∈ H Defines an up arrow on the β-th bottom edge

〈↓ |κ ∈ H Defines a down arrow on the β-th bottom edge

| ↑ 〉α ∈ V Defines an right arrow on the α-th right edge

| ↓ 〉α ∈ V Defines a left arrow on the α-th right edge

| ↑ 〉κ ∈ H Defines an up arrow on the β-th top edge

| ↓ 〉κ ∈ H Defines a down arrow on the β-th top edge

Where H is the space of horizontal pointing arrows.

3.1.2 Vertices

We will now give a different parameterisation of the vertex weights, a, b and c from

those in (2.1.1) - (2.1.3). Let λ → η − λ and u → 2η. This gives:

a(λ) = sinh(λ + η)

−b(λ) = sinh(λ− η)

c(λ) = sinh(2η)

We can then let b(λ) → −b(λ) so that our final parameterisation is:

a(λ) = sinh(λ + η)

b(λ) = sinh(λ− η)

c(λ) = sinh(2η)

Note that c(λ) remains independent of λ. It should also be noted that all partition

functions must have an even number of b vertices. This is why the partition function

is invariant under a change of sign to the b-vertex.

3.1.3 Boundary Conditions

Although not strictly a change in notation, we will work with new boundary condi-

tions. We will now consider an N ×N lattice rather than M ×N , and we will also
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use Domain Wall Boundary Conditions (DWBC) rather than require periodicity in

both directions. Domain wall boundary conditions have horizontal arrows facing

in, and vertical arrow pointing out:

I J

I J

I J

I J

I J

I J

N

H

N

H

N

H

N

H

N

H

N

H

A rotation of π
2 , or a reversion of all arrows, still satisfies the DWBC. Though, we

will only work in the above case.

3.2 The Inhomogeneous Case

So far we have we have been working in the homogenous case. We are now in

a position to appreciate the significance of the differences between homogeneous

and inhomogeneous cases. Let’s go over the main differences.

3.2.1 The Lattice

Consider our new lattice, and label it as follows:
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νN . . . ν3 ν2 ν1

λ1

λ2

λ3

...

λN

I J

I J

I J

I J

I J

I J

N

H

N

H

N

H

N

H

N

H

N

H

Each site in the lattice can be weight a, b or c (in the 6-vertex case). In the inho-

mogenous case we assumed that all of these sites were equivalent. However, in the

inhomogenous case, each vertex weight is dependent on its site. So an a vertex

on the 4th row and 5th column can have a different weight to an a vertex on the

6th row and 9th column. Thus, a vertex at site (λα, νκ) must depend these two

parameters. We can then represent the vertex weights as:

a(λα, νκ) b(λα, νκ) c(λα, νκ)

Specifying different values of λα and νκ for each row and column allows every

vertex to be assigned a different weight.

3.2.2 The M and L Operators and the spaces V and H

From the beginning of this thesis, we worked with Ln, where the n represented the

horizontal space that Ln operated in. We ignored the effect of λα and treated all

vertical spaces as equivalent. In the inhomogeneous case, we want an L-matrix that

operates in the entire space V ⊗H, meaning it can specify the value of any vertex.

This would require a dependance on both α and κ, where α defines the single

vertical space that Lαβ operates and κ defines the horizontal space. This would

mean that the entries of λαβ , the vertex weights, would have to be dependent on

both λα and νκ.

If we were to go back to the beginning of Chapter 1 and consider the inhomoge-

neous case (and work with our original boundary conditions), our working would

be almost identical. This is because our two most important operators; M and Ln
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only operated in the vertical space, V (as it was their vertical arrows that needed

to be specified). This independence of λα essentially allows us to treat it as a

constant. Thus, in the case where Boltzmann weights are dependent on repidities,

which are not necessarily independent variables, we let λα− νκ → λ, and we have

the homogeneous case, which we have already solved! Thus our vertex weights

must be:

a(λα, νκ) = sinh(λα − νκ + η) (3.2.1)

b(λα, νκ) = sinh(λα − νκ − η) (3.2.2)

c(λα, νκ) = sinh(2η) (3.2.3)

And the L matrix becomes:

Lα,κ(λα, νκ) =


a(λα, νκ) 0 0 0

0 b(λα, νκ) c(λα, νκ) 0

0 c(λα, νκ) b(λα, νκ) 0

0 0 0 a(λα, νκ)


α,κ

An alternative representation of Lα,κ uses ‘Pauli matrices’, σj :

Lα,κ(λα, νκ) =

[
sinh(λα − νκ + ησ3

κ) σ−κ sinh(2η)

σ−κ sinh(2η) sinh(λα − νκ − ησ3
κ)

]
α

Where the Pauli matrices are:

σ1
κ =

(
0 1

1 0

)
κ

σ2
κ =

(
0 −i

i 0

)
κ

σ3
κ =

(
1 0

0 −1

)
κ

And

σ+
κ =

1
2
(σ1

κ + iσ2
κ) =

(
0 1

0 0

)
κ

σ−κ =
1
2
(σ1

κ − iσ2
κ) =

(
0 0

1 0

)
κ

When σ occurs inside the argument of sinh we treat it as follows:

sinh(λα − νκ + ησ3
κ) =

(
sinh(λα − νκ + η) 0

0 sinh(λα − νκ − η)

)
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When squared the Pauli martices all become the 2× 2 identity matrix:

(σ1)2 = (σ2)2 = (σ3)2 =

(
1 0

0 1

)
= I

Note: it is standard notation to represent Pauli matrices with the numbers 1, 2, 3

as a subscript. However, we have assigned the subscript, κ, to denote the space in

which the L matrix acts. The reason for this will soon become clear. Some authors

will also occasionally replace the Pauli matrix number 1, 2, 3 with x, y, z.

�

In the inhomogenous case the monodromy matrix, Mα(λα), becomes:

Mα(λα) = LαN (λα, νN ) . . . Lα1(λα, ν1) =

[
A(λα) B(λα)

C(λα) D(λα)

]
α

(3.2.4)

The reason that M is only dependent on λα and not νκ is that M lies in V . We can

represent this graphically as:

νN . . . ν3 ν2 ν1

λα

3.2.3 The Eigenvalues

The eigenvalues given in (2.2.15) are slightly different in the inhomogeneous case.

Recall in Figure 4 we treated a(λ) as a constant, and obtained the eigenvalues of

A
∏l

j=1 B(λj)| ⇑ 〉. Part of this involved showing:

A(λ)| ⇑ 〉 = aN (λ)| ⇑ 〉

In the inhomogeneous case we are unable to do this, as each term in the product of

a vertices is dependent on (νk). Thus:

A(λ)| ⇑ 〉 =
N∏

k=1

sinh(λ− νk + η)| ⇑ 〉 (3.2.5)
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Similarly:

D(λ)| ⇑ 〉 =
N∏

k=1

sinh(λ− νk − η)| ⇑ 〉 (3.2.6)

We can think of (3.2.5) and (3.2.6) as giving the eigenvalues of A and D with

eigenfunction | ⇑ 〉. The eigenvalues of T (λ) become:

Λ(λ; {λj}j=l
j=1) =

N∏
k=1

sinh(λ− νk + η)
l∏

j=1

a(λj − λ)
b(λj − λ)

+
N∏

k=1

sinh(λ− νk − η)
l∏

j=1

a(λ− λj)
b(λ− λj)

where

T (λ)Φ = [A(λ) +D(λ)]Φ = Λ(λ)Φ

Unfortunately, TM does not represent the partition function with DWBC, and the

transfer matrix is of no help in calculating the partition function with such boundary

conditions. We need to represent the partition function in an alternative way.

3.2.4 The Partition Function

Using our new notation we can represent the partition function with DWBC as:

ZN =(
N∏

α=1

〈↑ |α)⊗ (
N∏

κ=1

〈↓ |κ)MN (λN ) . . .MN (λ1)(
N∏

κ=1

| ↑ 〉κ)⊗ (
N∏

α=1

| ↓ 〉α)

The products over α places ‘in’ arrows on the left and right boundaries of the lattice

and the products over β place ‘out’ arrows on the top and bottom of the lattice. ZN

is the sum over all configurations with these boundary conditions. We can represent

ZN :
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νN . . . ν3 ν2 ν1

λ1

λ2

λ3

...

λN

(〈⇑ |α)⊗ (〈⇓ |κ) | ⇑ 〉κ)⊗ (| ⇓ 〉α)

νN . . . ν3 ν2 ν1

λ1

λ2

λ3

...

λN

I J

I J

I J

I J

I J

I J

= 〈⇓ |κ | ⇑ 〉κ

or as:

ZN = 〈⇓ |B(λN ) . . .B(λ1)| ⇑ 〉

We can swap the order that MN (λN ) . . .MN (λ1) acts on the spaces H and V .

This is why we could act on 〈⇓ |α and | ⇑ 〉α before 〈⇓ |κ. In addition to the above

representation of the partition function, we will also use the following representa-

tion:1

ZN =

N∏
α=1

N∏
κ=1

sinh(λα − νκ + η) sinh(λα − νκ − η)∏
1≤α<β≤N

sinh(λβ − λα)
∏

1≤κ<j≤N

sinh(νκ − νj)
detNZ (3.2.7)

1We will not prove this, but a proof is provided in: Izergin A G 1987 Partition function of the

6-vertex model in the finite volume, Sov. Phys. Dokl. 32
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Where the entries of matrix Z are:

Zακ = φ(λα, νκ), α, κ = 1 . . . N (3.2.8)

and the function φ(λα, νκ) is defined:

φ(λ, ν) =
c(λ, ν)

a(λ, ν)b(λ, ν)
=

sinh(2η)
sinh(λ− ν + η) sinh(λ− ν − η)

(3.2.9)

3.3 Boundary Correlation Functions

3.3.1 H
(M)
N and G

(M)
N

We will consider two types of boundary correlation functions in this paper. The

first, H
(M)
N , is a function describing the weighted probability that an arrow on the

M-th row and first column will be inverted or inwards pointing. The inverted arrow

is also known as a “boundary spontaneous polarization”2. We can represent this

graphically as:

νN . . . ν3 ν2 ν1

λ1

λ2
...

λM

...

λN

I J

I J

I J

I I J

I J

I J

N

H

N

H

N

H

N

H

N

H

N

H

The second type of boundary correlation function, G
(M)
N describes the ‘weighted

probability’ of an inverted arrow on, or before, the M-th row. Any arrow from row

1 . . .M may be inverted.

The ‘weighted probability’ does not refer to the number of lattices with an inverted

arrow divided by the total number of non-zero lattices, as the term ‘probability’
2Bogoliubov, N. M.; Pronko, A. G.; Zvonarev, M. B, Boundary correlation functions of the

six-vertex model, 6
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would suggest. Instead. it represents the weight of all lattices with DWBC and an

inverted arrow on the M-th row (or first to M-th for G
(M)
N ), divided by the weights

of all lattices with or without the inverted arrow (i.e. the partition function ZN ).

We can represent these functions:

H
(M)
N =

1
ZN

〈⇓ |B(λN ) . . .B(λM+1)q1B(λM )p1B(λM−1) . . .B(λ1)| ⇑ 〉

(3.3.1)

G
(M)
N =

1
ZN

〈⇓ |B(λN ) . . .B(λM+1)q1B(λM )p1 . . .B(λ1)| ⇑ 〉 (3.3.2)

For now, we need to see that in H
(M)
N , the q1 and p1 have the effect of ensuring

that that the inverted arrow occurs on the M-th row of the lattice, that is B(λM ).

In G
(M)
N , the q1 ensures that the inverted arrow will occur on the right of q1, but

does not ‘trap’ the B(λM ) term. Instead the commutativity of B(λj) means that

the inverted arrow could occur on any of the rows from 1 . . .M , as required.

Before we calculate the the boundary correlation functions, we will make two ob-

servations.

Firstly, we can quite easily see from the definition of G
(M)
N and H

(M)
N that:

H
(M)
N = G

(M)
N −G

(M−1)
N

Secondly, we will show later that:

G
(M)
N = H

(M)
N + H

(M−1)
N + . . .H

(1)
N (3.3.3)

Thirdly, the probability that at least one arrow in the first column will be inverted,

is one. That is, G
(N)
N = 1. To prove this we will consider what happens when no

arrows are inverted:
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νN . . . ν3 ν2 ν1

λ1

λ2

λ3

...

λN

I J

I J

I J

I J

I J

I JJ

J

J

J

J

J

N

H

N

H

N

H

N

H

N

H

N

H

The bottom right vertex has two in arrows and one out arrow. We freeze the sur-

rounding arrows as follows:

νN . . . ν3 ν2 ν1

λ1

λ2

λ3

...

λN

I J

I J

I J

I J

I J

I J

N

H

N

H

N

H

N

H

N

H

N

H

J

J

J

J

J

J

H

We continue freezing arrows until we get:

νN . . . ν3 ν2 ν1

λ1

λ2

λ3

...

λN

I J

I J

I J

I J

I J

I J

N

H

N

H

N

H

N

H

N

H

N

H

J

J

J

J

J

J

H

H

H

H

H
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The top right vertex has been frozen to have three out arrows and therefore has

a weight of zero. As the partition function is equal to the product of the vertex

weights, one zero weight sends the entire weight to zero. This means that no lattice

exists with DWBC and no inverted arrows in the first column. Hence, G
(N)
N =

1.

3.3.2 Partitioning of Monodromy Matrix

Let’s write the monodromy matrix in the following form:

Mα(λα) = Mα2(λα)Mα1(λα)

Where

Mα2(λα) = LαN (λα, νN ) . . . LαN (λα, ν2) =

(
A2(λα) B2(λα)

D2(λα) D2(λα)

)
(3.3.4)

Mα1(λα) = Lα1(λα, ν1) =

(
A1(λα) B1(λα)

D1(λα) D1(λα)

)
(3.3.5)

The Mα1(λα) acts in the first vertical space | ⇑1〉 ≡ | ↑〉1, and Mα2(λα) acts in the

rest of the N − 1 vertical spaces,| ⇑2〉 ≡
∏N−1

j=2 ⊗| ↑〉j . Where

| ⇑〉 = | ⇑2〉 ⊗ | ⇑1〉 (3.3.6)

The entries of Mα1(λα) correspond to the entries of the Lα1(λα, ν1) given in

(3.2.4).

Now that we have decomposed M , let’s decompose B:

B(λ) = A2(λ)B1(λ) + B2(λ)D1(λ) (3.3.7)

This can be obtained from matrix multiplication of equations (3.3.5) and (3.3.4). It

is also quite clear when considered graphically:

= +I J I I J I J J
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3.3.3 Inhomogenous Yang-Baxter Equation and the Quantum R-Matrix

It is convenient to use new notation for the the Yang-Baxter equation. If we do not,

the formulas we are about to derive will not have the same simplicity. Consider the

Yang-Baxter equation, and express it:

Rαβ(λα, λβ)Lακ(λα, λκ)Lβκ(λβ, λκ) = Lβκ(λβ, λκ)Lακ(λα, λκ)Rαβ(λα, λβ)

�
�

�@
@

@

λα λβ

λβ λα

νN . . . ν1

R(λ1, λ2)

This is easily obtained from the Yang-Baxter equation by making the substitution:

λ → λα−λκ and λ′ → λβ−λκ. Note that the R matrix acts in the space hα⊗hβ .

We can represent the inhomogenous R-matrix:


a(λα, νβ) 0 0 0

0 c(λα, νβ) b(λα, νβ) 0

0 b(λα, νβ) c(λα, νβ) 0

0 0 0 a(λα, νβ)


αβ

Recalling that the R-matrix is only defined up to a constant, we can divide through

by c(λα, νβ) to obtain:


a(λα,νβ)
b(λα,νβ) 0 0 0

0 c(λα,νβ)
b(λα,νβ) 1 0

0 1 c(λα,νβ)
b(λα,νβ) 0

0 0 0 a(λα,νβ)
b(λα,νβ)


αβ

Making the substitution λα − νβ − η → λ− λ′ leaves us with:

a(λα, νβ)
b(λα, νβ)

=
sinh(λ− λ′ + 2η)

sinh(λ− λ′)
c(λα, νβ)
b(λα, νβ)

=
sinh(2η)

sinh(λ′ − λ)
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We can now write the R-matrix as:

Rαβ(λα, λβ) =


f(λ′, λ) 0 0 0

0 g(λ′, λ) 1 0

0 1 g(λ′, λ) 0

0 0 0 f(λ′, λ)


αβ

Where

f(λ′, λ) =
sinh(λ− λ′ + 2η)

sinh(λ− λ′)

g(λ′, λ) =
sinh(2η)

sinh(λ′ − λ)

Whilst λ and λ′ are arbitrary, it is clear that the R matrix has no ν dependance when

viewed graphically, as above:

The new definition of the R matrix will affect our commutation relation given by

(2.1.22), which becomes:

A(λ)
M∏

α=1

B(λα)| ⇑ 〉 = Λ(λ)
M∏

α=1

B(λα)| ⇑ 〉+
M∑

β=1

Λβ(λ)
M∏

α=1
α6=β

B(λα)| ⇑ 〉

(3.3.8)

where:

Λ(λ) =
N∏

α=1

sinh(λ− να + η)
M∏

γ=1

f(λ, λγ) (3.3.9)

Λβ(λ) =
N∏

α=1

sinh(λ− να + η)g(λβ, λ)
M∏

γ=1
γ 6=β

f(λβ, λγ) (3.3.10)

3.3.4 Derivation of H
(M)
N

Consider the function H
(M)
N , and represent it graphically as a lattice with DWBC

and an inverted arrow at λM in | ⇑ 〉. For example, consider the case N = 6 and

M = 3. H
(3)
6 is represented:
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ν6 ν5 ν4 ν3 ν2 ν1

λ1

λ2

λ3

λ4

λ5

λ6

I J

I J

I J

I J

I J

I J

N

H

N

H

N

H

N

H

N

H

N

H

I

We can now see that the vertex at (λ3, ν1) has two ‘in’ arrows. To enforce the

conservation of arrow flow, we must freeze the vertical arrows of to both point

‘out,’ giving:

ν6 ν5 ν4 ν3 ν2 ν1

λ1

λ2

λ3

λ4

λ5

λ6

I J

I J

I J

I J

I J

I J

N

H

N

H

N

H

N

H

N

H

N

H

I
H

N

This configuration now freezes the vertices at (λ2, ν1) and (λ4, ν1), which in turn

which freeze more vertices, and so on until all vertices (λα, ν1) (i.e. the entire

space H1) are frozen to:
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ν6 ν5 ν4 ν3 ν2 ν1

λ1

λ2

λ3

λ4

λ5

λ6

I J

I J

I J

I J

I J

I J

N

H

N

H

N

H

N

H

N

H

N

H

J

J

J

I

J

J

H

H

H

N

N

The frozen vertices all represent constants, and we can ‘peel’ them off the lattice,

leaving a new N × N − 1 lattice, multiplied by constants. Considering that the

second column must have at least one inverted arrow (proved earlier) and we have

just shown that the one inverted arrow on any row freezes all the other arrows in

the column, we can say that the all non-zero weight lattices with DWBC must have

one, and only one inverted arrow in the first column, which proves (3.3.3). Also

notice that the vertex at (λ1, ν1) is a b-vertex, as is (λ1, ν2). Vertex (λ1, ν3) is a

c-vertex, and (λ1, ν4), (λ1, ν5) and (λ1, ν6) are a-vertices. It is not difficult to see

what the pattern will be for higher M: all vertices above λM will be b’s, all below

λM will be a’s, and the λM term itself will be a c-vertex. Thus, we have:

ν6 ν5 ν4 ν3 ν2

λ1

λ2

λ3

λ4

λ5

λ6

I J

I J

I I

I J

I J

I J

N

H

N

H

N

H

N

H

N

H

× sinh(2η)
∏6

α=4 sinh(λα − ν1 − η)
∏2

α=1 sinh(λα − ν1 + η)

The sinh function comes form the definition of a, b and c. If we remove the ‘up’

arrows from from the top of the new lattice, as well as remove the ‘down’ arrows
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from the bottom, they will correspond to | ⇑ 〉2 and 〈⇓ |2 (as defined in (3.3.6)

leaving us with the representation:

ν6 ν5 ν4 ν3 ν2

λ1

λ2

λ3

λ4

λ5

λ6

I J

I J

I I

I J

I J

I J

〈⇓ | | ⇑ 〉

× sinh(2η)
∏6

α=4 sinh(λα − ν1 − η)
∏3

α=1 sinh(λα − ν1 + η)

we can see that the vertex is nothing more than a product of Bj’s (j 6= 3) and A3

in the middle. We now use the the algebraic Bethe ansatz to solve this model by

pushing the A3 through the B’s. The value H6
3 is

H6
3 = Z−1

6 sinh(2η)
2∏

α=1

sinhλj − ν1 − η

×〈⇓ |2B(λ6)2B(λ5)2B(λ4)2A(λ3)2B(λ2)2B(λ1)2| ⇑ 〉2

This can be easily generalised for higher values of M, giving us:

H
(M)
N =Z−1

N sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

× 〈⇓ |B2(λN ) . . .B2(λM+1)A2(λM )B2(λM−1) . . .B2(λ1)| ⇑ 〉
(3.3.11)

To simplify this we must make use of the relation (3.3.8) to ‘push’ the A2(λM )

through the B2’s:

A1(λM )B2(λM−1) . . .B2(λ1)| ⇑ 〉 = [Λ(λM )
M∏

α=1

B2(λα) +
M∑

β=1

Λβ(λ)
M∏

α=1
α6=β

B2(λα)]| ⇑ 〉
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Substituting in (3.3.10) and (3.3.10):

A2(λM )
M−1∏
j=1

B2(λj)| ⇑ 〉 =
N∏

α=2

sinh(λM − να + η)
M−1∏
γ=1

f(λM , λγ)
M−1∏
j=1

B2(λj)| ⇑ 〉

+
M−1∑
β=1

N∏
α=1

sinh(λβ − να + η)g(λβ, λM )

×
M−1∏
γ=1
γ 6=β

f(λβ, λγ)
M−1∏
α=1
α6=β

B2(λα)| ⇑ 〉

Note that the first product over α starts from α = 2 because, it represents the

eigenvector of A2, not A2. If we multiply the product over γ in the third line by

f(λβ, λM )/f(λβ, λM ), the product changes from (1 . . .M − 1) to (1 . . .M ), not

including β:

=
N∏

α=2

sinh(λM − να + η)
M−1∏
γ=1

f(λM , λγ)
M−1∏
j=1

B2(λj)| ⇑ 〉

+
M−1∑
β=1

N∏
α=2

sinh(λβ − να + η)
g(λβ, λM )
f(λβ, λM )

M∏
γ=1
γ 6=β

f(λβ, λγ)
M−1∏
α=1
α6=β

B2(λα)| ⇑ 〉

The trick now is to recognise that the first term is equivalent to an M-th term of the

sum over β, because at γ = M , the fraction g(λ, λ)/f(λ, λ) = sinh 2η/ sinh 2η =

1. Incorporating the first term into the sum gives:

=
M∑

β=1

N∏
α=2

sinh(λβ − να + η)
g(λβ, λM )
f(λβ, λM )

M∏
γ=1
γ 6=β

f(λβ, λγ)
M−1∏
α=1
α6=β

B(λα)| ⇑ 〉

Substituting this into (3.3.11) and noting that entire sum over β is a constant, we
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may write:

H
(M)
N =Z−1

N sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

〈⇓ |B2(λN ) . . .B2(λM+1)×
M∑

β=1

N∏
α=2

sinh(λβ − να + η)
g(λβ, λM )
f(λβ, λM )

×
M∏

γ=1
γ 6=β

f(λβ, λγ)× B2(λM−1) . . .B2(λ1)| ⇑ 〉

=Z−1
N sinh(2η)

M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

×
M∑

β=1

N∏
α=2

sinh(λβ − να + η)
g(λβ, λM )
f(λβ, λM )

M∏
γ=1
γ 6=β

f(λβ, λγ)

× 〈⇓ |B2(λN ) . . .B2(λM+1)B2(λM−1) . . .B2(λ1)| ⇑ 〉

The third line is simply an N − 1 × N − 1 partition function, missing λβ and

ν1, which we express as ZN−1({λ}N
α=1 α 6=β; {ν}N

κ=2. Hence, we finally have the

result:

H
(M)
N =Z−1

N sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

M∑
β=1

N∏
α=2

sinh(λβ − να + η)
g(λβ, λM )
f(λβ, λM )

×
M∏

γ=1
γ 6=β

f(λβ, λγ)ZN−1({λ}N
α=1 α 6=β; {ν}N

κ=2 (3.3.12)

3.3.5 Derivation of G
(M)
N

Using (3.3.3) and (3.3.11), we see that:

G
(M)
N =Z−1

N sinh(2η)
M∑

β=1

β−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=β+1

sinh(λα − ν1 + η)

× 〈⇓ |B2(λN ) . . .B2(λβ+1)A2(λβ)B2(λβ−1) . . .B2(λ1)| ⇑ 〉 (3.3.13)

We can use (3.3.8) to push Aβ through the B’s, as we did with H
(M)
N . However,

if we did this we would be left with a double summation. To avoid this, we will
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approach the problem a different way. If we were to choose the term of the sum

corresponding to β = M , and then expanded that term only using (3.3.8) then we

would have:

G
(M)
N =Z−1

N sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

× 〈⇓ |B2(λN ) . . .B2(λM+1)A2(λM )B2(λM−1) . . .B2(λ1)| ⇑ 〉

=Z−1
N sinh(2η)

M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

× 〈⇓ |B2(λN ) . . .B2(λM+1)×A2(λM )
M−1∏
α=1

B2(λα)| ⇑ 〉

=Z−1
N sinh(2η)

M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

× 〈⇓ |B2(λN ) . . .B2(λM+1)(
N∏

k=2

sinh(λM − νk + η)
M−1∏
γ=1

f(λM , λγ)

+ other terms)
M−1∏
α=1

B2(λα)| ⇑ 〉

=Z−1
N sinh(2η)

M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

(×
N∏

k=2

sinh(λM − νk + η)
M−1∏
γ=1

f(λM , λγ)

× 〈⇓ |B2(λN ) . . .B2(λM+1)B2(λM−1) . . .B2(λ1)| ⇑ 〉+ other terms)
Multiplying by sinh(λM − ν1 − η)/ sinh(λM − ν1 − η) allows us to make the

first product over α from 1 . . .M rather than 1 . . .M − 1, but leaves an extra

1/ sinh(λM − ν1 − η); and bringing sinh(2η) inside the sum gives:

=Z−1
N

M∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

(× sinh(2η)
∏N

k=2 sinh(λM − νk + η)
sinh(λM − ν1 − η)

M−1∏
γ=1

f(λM , λγ) (3.3.14)

× 〈⇓ |B2(λN ) . . .B2(λM+1)B2(λM−1) . . .B2(λ1)| ⇑ 〉+ other terms)
(3.3.15)

Note that the “other terms” are different in each line, but all correspond to other

products involving B2(λM ). In fact, the first term in the brackets is the only pos-
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sible term in G
(M)
N that does not contain B2(λM ). This is because, although all

the other terms in (3.3.13) will ‘push out’ a (λj) argument, they will all be for

j < M , meaning there is no other way to remove the (λj) argument from the

B2(λj)’s.

Also note that (3.3.13) is symmetric under permutations of λ1 . . . λM . This is be-

cause it makes no difference which order we arrange the terms in the sum, the

products in the first line are commutative, and the product of B2(λj)’s is commu-

tative.

The first term of our most recent expression for G
(M)
N (3.3.15) will be symmetric

under permutations of λ1 . . . λM−1 (we don’t include the λM term because it is

absent). This is because it only involves a product of constants, whose order is

unimportant, and a product of B2(λj)’s which is commutative.

It follows from these symmetry considerations that the rest of the “other terms” in

(3.3.15) must be the cyclic permutations of λ1 . . . λM . If the first term of (3.3.15)

corresponds to the cycle with λM missing, the rest of the terms must share the same

structure, only the β-th term will have λβ missing. Using the fact that

〈⇓ |B2(λN ) . . .B2(λM+1)B2(λM−1) . . .B2(λ1)| ⇑ 〉

represents an N − 1 × N − 1 partition function, missing (λβ, νj), we have the

following expression for correlation function G
(M)
N :

G
(M)
N =Z−1

N

M∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

×
M∑

β=1

N∏
α=2

sinh(λβ − να + η)
sinh(2η)

sinh(λβ − ν1 − η)

×
M∏

γ=1
γ 6=β

f(λβ, λγ)ZN−1({λ}N
α=1 α 6=β; {ν}N

κ=2) (3.3.16)

3.3.6 Implications

The significance of (3.3.16) is that when M = N , the equation simplifies, and

gives a recursion relation between the partition function of an N × N lattice and
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an N − 1×N − 1 lattice. Recalling that G
(M)
N = 1:

1 =Z−1
N sinh(2η)

N∏
α=1

sinh(λα − ν1 − η)
N∏

α=N+1

sinh(λα − ν1 + η)

×
N∑

β=1

N∏
α=2

sinh(λβ − να + η)
1

sinh(λβ − ν1 − η)
(3.3.17)

×
N∏

γ=1
γ 6=β

f(λβ, λγ)ZN−1 (3.3.18)

Bringing the first product (which is a constant) inside the sum gives:

ZN =sinh(2η)
N∑

β=1

N∏
α=2

sinh(λβ − να + η)
∏N

α=1 sinh(λα − ν1 − η)
sinh(λβ − ν1 − η)

×
N∏

γ=1
γ 6=β

f(λβ, λγ)ZN−1

Canceling outthe β-th term of the second product leaves us the very imporrtant

relation:

ZN ({λ}N
α=1; {ν}N

κ=1) = sinh(2η)
N∑

β=1

N∏
α=2

sinh(λβ − να + η)
N∏

α=1
α6=β

sinh(λα − ν1 − η)

×
N∏

γ=1
γ 6=β

f(λβ, λγ)ZN−1({λ}N
α=1 α 6=β; {ν}N

κ=2) (3.3.19)

This is the recurrence relation between the value of an N × N partition function

and an N−1×N−1 partition function with DWBC. It can be used to calculate ZN

when an initial state, Z1, is given. Due to the symmetry of ZN with respect to per-

mutations of the variables ν1 . . . νN , we can express this in the general form:

ZN ({λ}N
α=1; {ν}N

κ=1) = sinh(2η)
N∑

β=1

N∏
α=1
α6=j

sinh(λβ − να + η)
N∏

α=1
α6=β

sinh(λα − νj − η)

×
N∏

γ=1
γ 6=β

f(λβ, λγ)ZN−1({λ}N
α=1 α 6=β; {ν}N

κ=j)
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3.4 Determinant Representations for Boundary Correla-
tion Functions

3.4.1 Proof that detZN Satisfies Recurrence Relation

We will now prove that the determinant representation of the partition function

satisfies the recursion relation (3.3.19) Consider the function

gN (λ) =

N∏
α=1

sinh(λα − λ + 2η)

N∏
κ=1

sinh(λ− λκ + η)

(3.4.1)

For this function the following identity exists3:

N∏
γ=1
γ 6=α

sinh(λγ − λα + 2η)

N∏
j=1

sinh(λα − νj − η)

=
N∑

κ=1

N∏
γ=1
γ 6=α

sinh(λγ − νκ + η)

N∏
j=1
j 6=κ

sinh(νκ − νj)

1
sinh(λα − νk − η)

(3.4.2)

If we multiply both sides of (3.4.2) by sinh(λα − λα + 2η) = sinh(2η) we

have:

sinh(λα − λα + 2η)

N∏
γ=1
γ 6=α

sinh(λγ − λα + 2η)

N∏
j=1

sinh(λα − νj − η)

=

sinh(2η)×
N∑

κ=1

N∏
γ=1
γ 6=α

sinh(λγ − νκ + η)

N∏
j=1
j 6=κ

sinh(νκ − νj)

1
sinh(λα − νk − η)

3Bogoliubov, N. M.; Pronko, A. G.; Zvonarev, M. B, Boundary correlation functions of the

six-vertex model, 11
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Because sinh(2η) does not depend on the summation index, γ we can bring it

inside the sum. We can do the same for sinh(λα− λα + 2η) so that the product on

the numerator becomes a product over all values of γ.

N∏
γ=1

sinh(λγ − λα + 2η)

N∏
j=1

sinh(λα − νj − η)

=
N∑

κ=1

N∏
γ=1
γ 6=α

sinh(λγ − νκ + η)

N∏
j=1
j 6=κ

sinh(νκ − νj)

sinh(2η)
sinh(λα − νk − η)

If we multiply the RHS by the constant sinh(λα−να+η)
sinh(λα−να+η) and bring it inside the sum

over κ, we can then bring the numerator inside the product over γ so that it is now

over all values:

N∏
γ=1

sinh(λγ − λα + 2η)

N∏
j=1

sinh(λα − νj − η)

=
N∑

κ=1

sinh(λα − να + η)×
N∏

γ=1
γ 6=α

sinh(λγ − νκ + η)

N∏
j=1
j 6=κ

sinh(νκ − νj)

× sinh(2η)
sinh(λα − νk − η) sinh(λα − να + η)

=
N∑

κ=1

N∏
γ=1

sinh(λγ − νκ + η)

N∏
j=1
j 6=κ

sinh(νκ − νj)

× sinh(2η)
sinh(λα − νk − η) sinh(λα − να + η)

Which allows us to rewrite (3.4.2) as:

gN (λα) =
N∑

κ=1

Φκφ(λα, νκ), α = 1 . . . N (3.4.3)

Where φ is as defined in (3.2.9) and Φk is defined as:

Φκ =

N∏
α=1

sinh(λα − νκ + η)

N∏
j=1
j 6=κ

sinh(νκ − νj)

κ = 1 . . . N (3.4.4)

86



Expanding (3.4.3) gives N linearly independent equations:

gN (λ1) =Φ1φ(λα, ν1) + Φ2φ(λα, ν2) + . . . + ΦNφ(λα, νN )

gN (λ2) =Φ1φ(λα, ν1) + Φ2φ(λα, ν2) + . . . + ΦNφ(λα, νN )
...

gN (λN ) =Φ1φ(λα, ν1) + Φ2φ(λα, ν2) + . . . + ΦNφ(λα, νN )

If we treat Φκ as our variable, we can solve this system of equations using Cramer’s

rule. Using the fact that the determinant of the matrix with entries φ(λα, νκ) is

detNZ , we have:

Φ1 =
detNZ1

detNZ

Where detNZ1 is matrix detNZ with the first column replaced by gN (λ1) . . . gN (λN )

(this is Cramer’s rule). Dividing through by Φ1 and multiplying out detNZ gives:

detNZ =
1
Φ1

∣∣∣∣∣∣∣∣∣∣∣

gN (λ1) φ(λ1, ν2) . . . φ(λ1, νN )

gN (λ2) φ(λ2, ν2) . . . φ(λ2, νN )
...

...
. . .

...

gN (λN ) φ(λN , ν2) . . . φ(λN , νN )

∣∣∣∣∣∣∣∣∣∣∣
N

Using elementary linear algebra techniques, we can calculate the determinant by

expanding along the first column, so that we are left with:

detNZ =
1
Φ1

N∑
β=1

(−1)β−1gN (λβ)∆(β)
N−1 (3.4.5)

where ∆(β)
N−1 denotes the determinant of an N − 1×N − 1 matrix:

∆(β)
N−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(λ1, ν2) . . . φ(λ1, νN )
...

. . .
...

φ(λβ−1, ν2) . . . φ(λβ−1, νN )

φ(λβ+1, ν2) . . . φ(λβ+1, νN )
...

. . .
...

φ(λN , ν2) . . . φ(λN , νN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N−1

(3.4.6)
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Equation (3.4.6) is helpful in expressing ZN−1({λ}N
α=1 α 6=β; {ν}N

κ=2) using (3.2.7).

Looking closely at (3.2.7) you can see that ZN−1) is similar to the formula for ZN ,

only we cannot include ν1 or λβ in any of the terms. Before we represent ZN−1,

we will simplify some of the products in (3.2.7), when they do not include ν1 or

λβ:

Products 1 and 2

It is quite simple to see that if we take out all ν1 and λβ from the product in the

numerator of (3.2.7) we have:

N∏
α=1

N∏
κ=1

sinh(λα − νκ + η) sinh(λα − νκ − η) =

[
N∏

κ=1

sinh(λβ − νκ + η) sinh(λβ − νκ − η)]

× [
N∏

α=1
α6=β

sinh(λα − ν1 + η) sinh(λα − ν1 − η)]

×
N∏

α=1
α6=β

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η) (3.4.7)

The reason for the α 6= β in the terminal of the third product, is that product

corresponding to α = β, κ = 1 is already included in the second product, and we

do not want to count it twice.

Product 3

We now want to take out all ν1 and λβ from the first product in the denominator.

This is a bit trickier. Firstly, given that the terminals α and β are dummy variables,

to avoid confusion with λβ we will change the product indices to i and j, so that

our product becomes
∏

1≤j<i≤N
i,j 6=β

sinh(λi − λj). To simplify this, we will represent

it pictorially in the example N = 6, β = 3:
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2, 1

3, 1 3, 2

4, 1 4, 2 4, 3

5, 1 5, 2 5, 3 5, 4

6, 1 6, 2 6, 3 6, 4 6, 5

(i, j)

β = 3
-

2, 1

3,1 3,2

4, 1 4, 2 4,3

5, 1 5, 2 5,3 5, 4

6, 1 6, 2 6,3 6, 4 6, 5

The LHS represents all possible values of (i, j) where 1 ≤ j < i ≤ 6, while on the

RHS, the numbers in bold are the pairs of (i, j) we cannot include in the product

when β = 3. Our product becomes:

∏
1≤j<i≤6

sinh(λi − λj) =
∏

1≤j<i≤6
i,j 6=3

sinh(λi − λj)× sinh(λ4 − λ3) sinh(λ5 − λ3)

× sinh(λ6 − λ3) sinh(λ3 − λ1) sinh(λ3 − λ2)

Swapping the argument of the last two terms gives:∏
1≤j<i≤6

sinh(λi − λj) =
∏

1≤j<i≤6
i,j 6=3

sinh(λi − λj)× sinh(λ4 − λ3) sinh(λ5 − λ3)

× sinh(λ6 − λ3)× (−1)3−1 sinh(λ1 − λ3) sinh(λ2 − λ3)

=
∏

1≤j<i≤6
i,j 6=3

sinh(λi − λj)× (−1)3−1
N=6∏
α=1
α6=3

sinh(λα − λ3)

We can easily generalize this result to:

∏
1≤j<i≤N

sinh(λi − λj) =
∏

1≤j<i≤N
i,j 6=β

sinh(λi − λj)× (−1)β−1
N∏

α=1
α6=β

sinh(λα − λβ)

(3.4.8)

Product 4

Simplifying the second product in the denominator is much simpler than above and

we may be able to see the answer immediately. However, if we go through the same
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process as we did for Product 3, except for κ = j = 1, only the first column is

eliminated from the product. This is the product over κ = 1 and i = 2 . . . N :

∏
1≤κ<i≤N

sinh(νκ − νi) =
N∏

j=2

sinh(ν1 − νj)×
∏

2≤κ<i≤N

sinh(νκ − νi) (3.4.9)

�

We are now in a position to prove that (3.2.7) satisfies (3.3.19), that is, the determi-

nant representation of the partition function satisfies the recurrence relation. Firstly

we will write ZN−1 using (3.2.7).

ZN−1({λ}N
i=1
i6=β

; {ν}N
κ=2) =

N∏
α=1
α6=β

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)

∏
1≤j<i≤N

i,j 6=β

sinh(λi − λj)
∏

2≤κ<j≤N

sinh(νκ − νj)
detN−1Z

We can also see that detN−1Z is the determinant of the N − 1 × N − 1 ma-

trix with entries φ(λα, νκ) where α 6= β and κ 6= 1. This is precisely (3.4.6)!

ZN−1becomes:

ZN−1({λ}N
i=1
i6=β

; {ν}N
κ=2) =

N∏
α=1
α6=β

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)

∏
1≤j<i≤N

i,j 6=β

sinh(λi − λj)
∏

2≤κ<j≤N

sinh(νκ − νj)
∆(β)

N−1

(3.4.10)

We can see that this is very similar to the (3.2.7) expression for ZN . Making use

of (3.4.1), (3.4.8) and (3.4.9) we can see that:

ZN−1 =ZN ×
∆(β)

N−1

detN−1Z
× 1∏N

κ=1 sinh(λβ − νκ + η) sinh(λβ − νκ − η)

× 1∏N
α=1
α6=β

sinh(λα − ν1 + η) sinh(λα − ν1 − η)

× (−1)β−1
N∏

α=1
α6=β

sinh(λα − λβ)×
N∏

j=2

sinh(ν1 − νj)
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Substituting this expression for ZN into the LHS of equation (3.3.19) gives:

ZN = sinh(2η)
N∑

β=1

N∏
α=1
α6=β

sinh(λα − ν1 − η)
N∏

κ=2

sinh(λβ − νκ + η)

×
N∏

γ=1
γ 6=β

sinh(λγ − λβ + 2η)
sinh(λγ − λβ)

× ZN ×
∆(β)

N−1

detN−1Z

× 1∏N
κ=1 sinh(λβ − νκ + η) sinh(λβ − νκ − η)

× 1∏N
α=1
α6=β

sinh(λα − ν1 + η) sinh(λα − ν1 − η)

× (−1)β−1
N∏

α=1
α6=β

sinh(λα − λβ)×
N∏

j=2

sinh(ν1 − νj)

We now wish to simplify this. We can cancel the ZN terms, and move the detN−1Z
term to the RHS, as both of these are constants. We can also see that the denomi-

nator of the product over β in the second line, will cancel with the product over α

in the fifth line:

detN−1Z = sinh(2η)
N∑

β=1

∆(β)
N−1

N∏
α=1
α6=β

sinh(λα − ν1 − η)
N∏

κ=2

sinh(λβ − νκ + η)

×
N∏

γ=1
γ 6=β

sinh(λγ − λβ + 2η)

× 1∏N
κ=1 sinh(λβ − νκ + η) sinh(λβ − νκ − η)

× 1∏N
α=1
α6=β

sinh(λα − ν1 + η) sinh(λα − ν1 − η)

× (−1)β−1
N∏

j=2

sinh(ν1 − νj)

Now rewrite the final product in terms of Φ1 using (3.4.4); break up the products

in the third and fourth terms; and bring the sinh(2η) inside the product over γ on

the second line, so that it becomes a product over all γ.
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detN−1Z =
N∑

β=1

∆(β)
N−1

N∏
α=1
α6=β

sinh(λα − ν1 − η)
N∏

κ=2

sinh(λβ − νκ + η)

×
N∏

γ=1

sinh(λγ − λβ + 2η)

× 1∏N
κ=1 sinh(λβ − νκ + η)

× 1∏N
κ=1 sinh(λβ − νκ − η)

× 1∏N
α=1
α6=β

sinh(λα − ν1 + η)
× 1∏N

α=1
α6=β

sinh(λα − ν1 − η)

× (−1)β−1
N∏

γ=1

sinh(λγ − ν1 + η)× 1
Φ1

We can now cancel the product over α in the first line with the second product

over α in the fourth line and cancel the product over κ in the first line with the first

product over κ in the third line, except for the sinh(λβ − ν1 + η) term which we

can put into the product over α in the fourth line:

detN−1Z =
1
Φ1

N∑
β=1

∆(β)
N−1 ×

N∏
γ=1

sinh(λγ − λβ + 2η)

× 1∏N
κ=1 sinh(λβ − νκ − η)

× 1∏N
α=1 sinh(λα − ν1 + η)

× (−1)β−1
N∏

γ=1

sinh(λγ − ν1 + η)

Canceling the product in the third and fourth lines and grouping those in the first

and second lines leaves us with:

detN−1Z =
1
Φ1

N∑
β=1

(−1)β−1∆(β)
N−1

∏N
γ=1 sinh(λγ − λβ + 2η)∏N
κ=1 sinh(λβ − νκ − η)

=
1
Φ1

N∑
β=1

(−1)β−1gN (λβ)∆(β)
N−1
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Which is formula (3.4.5) which we have already showed is correct. This proves

that the determinant representation of the partition function (3.2.7) is a solution to

the recursion relation (3.3.19).

3.4.2 H
(M)
N in Determinant Form

We now wish to derive an expression for H
(M)
N using only determinants, which

is independent of partition functions. We begin by substituting the expression for

ZN−1 given by (3.4.10)into (3.3.12). This gives:

H
(M)
N =Z−1

N sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

×
M∑

β=1

N∏
α=2

sinh(λβ − να + η)
g(λβ, λM )
f(λβ, λM )

×
M∏

γ=1
γ 6=β

f(λβ, λγ)×

N∏
α=1
α6=β

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)

∏
1≤α<β≤N

α6=β

sinh(λβ − λα)
∏

2≤κ<j≤N

sinh(νκ − νj)
∆(β)

N−1

We expand f and g, and use (3.4.8) to simplify the product over 1 ≤ j < i ≤ N

where i, j 6= β.

H
(M)
N =Z−1

N sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

M∑
β=1

N∏
α=2

sinh(λβ − να + η)
sinh(2η)

sinh(λM − λβ)
sinh(λβ − λM )

sinh(λβ − λM + 2η)

×
M∏

γ=1
γ 6=β

sinh(λγ − λβ + 2η)
sinh(λγ − λβ)

×

N∏
α=1
α6=β

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)

∏
1≤j<i≤N

sinh(λi − λj)
∏

2≤κ<j≤N

sinh(νκ − νj)

× (−1)β−1
N∏

α=1
α6=β

sinh(λα − λβ)∆(β)
N−1
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We can simplify several of these terms. We can cancel part of the denominator of

the product in the third line with the product in the fifth line, and then bring the

sinh(2η) inside the product on the third line so that it is over all values of γ:

H
(M)
N =Z−1

N sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

M∑
β=1

N∏
α=2

sinh(λβ − να + η)
1

sinh(λM − λβ)
sinh(λβ − λM )

sinh(λβ − λM + 2η)

×
M∏

γ=1

sinh(λγ − λβ + 2η)

×

N∏
α=1
α6=β

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)

∏
1≤j<i≤N

sinh(λi − λj)
∏

2≤κ<j≤N

sinh(νκ − νj)

× (−1)β−1∆(β)
N−1

N∏
α=M+1

α6=β

sinh(λα − λβ)

We can cancel the sinh(λM − λβ)/ sinh(λβ − λM ) from the second line; use the

1/ sinh(λβ − λM + 2η) to cancel the M-th term of the product on the third line;

bring the denominators of the fourth line out of the summation sign; we can also

bring numerator out from the summation sign, except that we will bring it out

for all values of α, including β, which by (3.4.8) will leave an additional product

within the sum:

H
(M)
N =Z−1

N sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

×

N∏
α=1

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)∏
1≤j<i≤N

sinh(λi − λj)
∏

2≤κ<j≤N

sinh(νκ − νj)

M∑
β=1

N∏
α=2

sinh(λγ − νβ + η)
M−1∏
γ=1

sinh(λβ − λγ + 2η)

× (−1)β−1∆(β)
N−1 ×

∏N
α=M+1

α6=β

sinh(λα − λβ)∏N
k=2 sinh(λβ − νk + η) sinh(λβ − νk − η)
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The first product in the sum cancels with part of the product in the fourth line, and

we are left with:

H
(M)
N =sinh(2η)

M−1∏
α=1

sinh(λα − ν1 − η)
M∏

α=M+1

sinh(λα − ν1 + η)

×

N∏
α=1

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)∏
1≤α<β≤N

sinh(λβ − λα)
∏

2≤κ<j≤N

sinh(νκ − νj)

×
M∑

β=1

M−1∏
γ=1

sinh(λγ − λβ + 2η)
N∏

α=M+1

sinh(λα − λβ)

N∏
κ=2

sinh(λβ − λκ − η)

(−1)β−1∆(β)
N−1

(3.4.11)

We can simplify this equation in steps. Consider the second line and multiply it by

the product,
QN

j=2 sinh(ν1−νj)QN
j=2 sinh(ν1−νj)

:

N∏
α=1

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)∏
1≤α<β≤N

sinh(λβ − λβ)
∏

2≤κ<j≤N

sinh(νκ − νj)
×

N∏
j=2

sinh(ν1 − νj)

N∏
j=2

sinh(ν1 − νj)

(3.4.12)

Using (3.4.9) we can rewrite (3.4.12) as:

N∏
α=1

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)∏
1≤α<β≤N

sinh(λβ − λβ)
∏

1≤κ<j≤N

sinh(νκ − νj)
×

N∏
j=2

sinh(ν1 − νj)

Multiplying this result by∏N
α=1 sinh(λα − ν1 + η) sinh(λα − ν1 − η)∏N
α=1 sinh(λα − ν1 + η) sinh(λα − ν1 − η)

and changing the product over κ in the numerator to start from κ = 1. The second
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term of (3.4.11) becomes:

N∏
α=1

N∏
κ=1

sinh(λα − νκ + η) sinh(λα − νκ − η)∏
1≤α<β≤N

sinh(λβ − λβ)
∏

1≤κ<j≤N

sinh(νκ − νj)
(3.4.13)

×

N∏
j=2

sinh(ν1 − νj)

N∏
α=1

sinh(λα − ν1 + η) sinh(λα − ν1 − η)

(3.4.14)

Which by (3.2.7) is:

N∏
j=2

sinh(ν1 − νj)

N∏
α=1

sinh(λα − ν1 + η) sinh(λα − ν1 − η)

× 1
detNZ

(3.4.15)

Consider the first two terms of (3.4.11) now that we have simplified them:

sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

N∏
α=1

sinh(λα − ν1 + η) sinh(λα − ν1 − η)

×

N∏
j=2

sinh(ν1 − νj)

detNZ

Splitting the products in the denominator:

=

sinh(2η)
M−1∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

N∏
α=1

sinh(λα − ν1 − η)
N∏

α=1

sinh(λα − ν1 + η)

×

N∏
j=2

sinh(ν1 − νj)

detNZ

Many of the terms in the products will cancel and we may rewrite the terminals as

follows:

=
sinh(2η)

N∏
α=M

sinh(λα − ν1 − η)
M∏

α=1

sinh(λα − ν1 + η)

×

N∏
j=2

sinh(ν1 − νj)

detNZ
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=

sinh(2η)
N∏

j=2

sinh(ν1 − νj)

N∏
α=M

sinh(λα − ν1 − η)
M∏

α=1

sinh(λα − ν1 + η)

× 1
detNZ

(3.4.16)

Now consider the third term of (3.4.11). We can see that this is a determinant of

some N × N matrix evaluated along the first column. The entries of the N × N

matrix H are:

Hα1 = hM (λα), Hακ = φ(λα, νκ), κ = 2 . . . N.

and

hM (λα) =

M−1∏
γ=1

sinh(λγ − λα + 2η)
N∏

γ=M+1

sinh(λγ − λα)

∏N
j=2 sinh(λα − νκ − η)

Note that hM (λα) = 0 for α > M , as the product
∏N

M+1 sinh(λγ − λβ) would

always have a zero when λγ = λα, which would be every term of the sum for

β = 1 . . . N . So when we include it in the determinant sum, we only need the first

M terms.

The product of (3.4.16) and our new expression detNH, gives us a simplified ex-

pressions for (3.4.11):

sinh(2η)
N∏

j=2

sinh(ν1 − νj)

N∏
α=M

sinh(λα − ν1 − η)
M∏

α=1

sinh(λα − ν1 + η)

× detNH
detNZ

Which is the expression of H
(M)
N using only determinants. We call this, H

(M)
N in

determinant form.

3.4.3 G
(M)
N in Determinant Form

Now we wish to derive an expression for GM in determinant form. We do this the

same way that we found HM . Substitute the simplified expression for ZN−1 into
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(3.3.16)

G
(M)
N =Z−1

N

M∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

×
M∑

β=1

N∏
α=2

sinh(λβ − να + η)
sinh(2η)

sinh(λβ − ν1 − η)

×
M∏

γ=1
γ 6=β

sinh(λγ − λβ + 2η)
sinh(λβ − λγ)

×

∏N
α=1
α6=β

∏N
κ=2 sinh(λα − νκ + η) sinh(λα − νκ − η)∏

1≤j<i≤N sinh(λi − λj)
∏

2≤κ<j≤N sinh(νκ − νj)

× (−1)β−1
N∏

α=1
α6=β

sinh(λα − λβ)∆(β)
N−1

To simplify this expression, cancel the denominator of the third line with part of

the the product in the fifth line; bring the sinh(2η) inside the sum over γ in the

third line to make it over all values:

G
(M)
N =Z−1

N

M∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

×
M∑

β=1

N∏
α=2

sinh(λβ − να + η)
1

sinh(λβ − ν1 − η)

×
M∏

γ=1

sinh(λγ − λβ + 2η)

×

N∏
α=1
α6=β

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)

∏
1≤j<i≤N

sinh(λi − λj)
∏

2≤κ<j≤N

sinh(νκ − νj)

× (−1)β−1∆(β)
N−1

N∏
α=M+1

sinh(λα − λβ)

We can take the products in the denominator of the fourth term out of the summa-

tion; the numerator of the fifth term, over all values, which means we must leaving

an additional product by (3.4.1):
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G
(M)
N =Z−1

N

M∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

×

N∏
α=1

N∏
κ=2

sinh(λα − νκ + η) sinh(λα − νκ − η)∏
1≤j<i≤N

sinh(λi − λj)
∏

2≤κ<j≤N

sinh(νκ − νj)

×
M∑

β=1

N∏
α=2

sinh(λβ − να + η)
1

sinh(λβ − ν1 − η)

×
M∏

γ=1

sinh(λγ − λβ + 2η)

× (−1)β−1∆(β)
N−1 ×

∏N
α=M+1 sinh(λα − λβ)∏N

k=2 sinh(λβ − νk + η) sinh(λβ − νk − η)

Cancel the first product in the sum, with part of the product in the denominator

of fifth line; bring 1/ sinh(λβ − νk − η) into the remainder of the denominator of

the same product on the fifth line so that it is a sum over k = 1 . . .M rather than

k = 2 . . .M ; and use steps (3.4.12)- (3.4.14) to write the second line as the RHS

of (3.4.15):

G
(M)
N =Z−1

N

M∏
α=1

sinh(λα − ν1 − η)
N∏

α=M+1

sinh(λα − ν1 + η)

N∏
j=2

sinh(ν1 − νj)

N∏
α=1

sinh(λα − ν1 + η) sinh(λα − ν1 − η)

× 1
detNZ

×
M∑

β=1

(−1)β−1∆(β)
N−1 ×

M∏
γ=1

sinh(λγ − λβ + 2η)
N∏

α=M+1

sinh(λα − λβ)

N∏
k=1

sinh(λβ − νk − η)

Canceling similar terms in the denominator of the second term and numerator of
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first term leaves us with:

G
(M)
N =Z−1

N

N∏
j=2

sinh(ν1 − νj)∏N
α=M+1 sinh(λα − ν1 − η)

∏M
α=1 sinh(λα − ν1 + η)

1
detNZ

×
M∑

β=1

(−1)β−1∆(β)
N−1 ×

M∏
γ=1

sinh(λγ − λβ + 2η)
N∏

α=M+1

sinh(λα − λβ)

N∏
k=1

sinh(λβ − νk − η)

Using the same logic as we used for H
(M)
N , we can represent the sum as the deter-

minant of an N − 1×N − 1 matrix, G, so that:

G
(M)
N =Z−1

N

N∏
j=2

sinh(ν1 − νj)∏N
α=M+1 sinh(λα − ν1 − η)

∏M
α=1 sinh(λα − ν1 + η)

detNG
detNZ

Where the entries of matrix G are given by

Gα1 = gM (λ) Gαk = φ(λα, νk), k = 2 . . . N

and:

gM (λ) =

∏M
γ=1 sinh(λγ − λ + 2η)

∏N
α=M+1 sinh(λα − λ)∏N

k=1 sinh(λ− νk − η)

As with H
(M)
N , the zeros of gN (λ) occur at λM+1 . . . λN , meaning the lastN −M

terms of the first column of G are zero.

3.5 The Free Fermion Case

3.5.1 Definition and Inhomogeneous Correlation Function H
(M)
N

We will now consider an application, and evaluate H
(M)
N for this particular prob-

lem. The free fermion case places the following restriction on the vertex weights
4

a2(λα, νκ) + b2(λα, νκ) = c2(λα, νκ) α, κ = 1 . . . N

4Bogoliubov, N. M.; Pronko, A. G.; Zvonarev, M. B, Boundary correlation functions of the

six-vertex model, 13
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The equation is satisfied if we let η = iπ
4 , let λα → iλα and νκ → iνκ and rescale

a → −ia, b → −ib, c → −ic:

sinh2(λα − νκ + η) + sinh2(λα − νκ − η) = sinh2(2η)

(−i sinh(iλα − iνκ + iπ/4))2 + (−i sinh(iλα − iνκ − iπ/4))2 =(−i sinh(iπ/2))2

sin2(λα − νκ + π/4) + sin2(λα − νκ − π/4) = sin2(π/2)

sin2(λα − νκ + π/4) + sin2(λα − νκ − π/4) =1

sin2(λ′α − ν ′κ) + cos2(λ′α − ν ′κ) =1

Where we have used −i sinh(ix) = sin(x), and made the substitution λ′α − ν ′κ =

λα − νκ + π/4 to satisfy the equation. Hence we have:

a(λα, νκ) = sin(λα − νκ +
π

4
)

b(λα, νκ) = sin(λα − νκ −
π

4
)

c(λα, νκ) = 1

Under this condition, the determinant in equation (3.2.7) becomes the Cauchy de-

terminant, and we can evaluate the partition function explicitly:5

ZN =
∏

1≤α<β≤N

cos(λα − λβ)
∏

1≤k<j≤N

cos(νk − νj)

We can then evaluate the correlation function H
(M)
N . Substituting this expression

for ZN into (3.3.12) one can obtain, using relations (3.4.1), (3.4.8) and (3.4.9):

H
(M)
N =

M−1∏
α=1

sin(λα − ν1 −
π

4
)

N∏
α=M+1

sin(λα − ν1 +
π

4
)

N∏
j=1

cos(νj − ν1)

(3.5.1)

×
M∑

β=1

N∏
j=2

sin(λβ − νj +
π

4
)

N∏
α=M

cos(λα − λβ)

M∏
α=1
α6=β

1
sin(λα − λβ)

(3.5.2)

5Bogoliubov, N. M.; Pronko, A. G.; Zvonarev, M. B, Boundary correlation functions of the

six-vertex model, 14
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Which represents the inhomogeneous correlation function H
(M)
N .6

3.5.2 The Homogeneous Limit of H
(M)
N

We will now evaluate the homogeneous limit of this our expression for H
(M)
N in

the free fermion case. The homogeneous limit is letting all our parameters become

constants: λN = . . . = λ1 ≡ λ and νN = . . . = ν1 ≡ ν, so that our vertex weights

only depend on a constant; λ − ν. Letting λ − ν + π
4 → λ we have the following

vertex weights:

a(λ) = sin(λ +
π

2
) = cos(λ)

b(λ) = sin(λ)

c(λ) = 1

Note that the partition function of the homogeneous model becomes ZN = 1.

If we use set all ν and λ to be equivalent at once, (3.5.2) becomes ∞ which is not

helpful. This is why we must take the limit. We evaluate H
(M)
N by firstly, setting ν

to be a constant, keeping λα a variable and then taking the limit as λα → λ. Start

by letting νκ = ν = −π
4 , and put this into (3.5.2):

H
(M)
N =

M−1∏
α=1

sin(λ)
N∏

α=M+1

cos(λα)

N∏
j=1

cos(0)

×
M∑

β=1

N∏
j=2

cos(λβ)

N∏
α=M

cos(λα − λβ)

M∏
α=1
α6=β

1
sin(λα − λβ)

=
M−1∏
α=1

sin(λ)
N∏

α=M+1

cos(λα)×
M∑

β=1

cosN−1(λβ)
N∏

α=M

cos(λα − λβ)

M∏
α=1
α6=β

1
sin(λα − λβ)

We may express the product of cos(λj) in the form of a power, because the product

6Although we rushed the derivation of H
(M)
N , this was because we want to focus on the evaluation

of the homogeneous limit
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in independent of β. Multiplying by
QN

α=1 cos(λα)QN
α=1 cos(λα)

gives:

H
(M)
N =

M−1∏
α=1

sin(λ)
N∏

α=M+1

cos(λα)

∏N
α=1 cos(λα)

×
M∑

β=1

cosN−1(λβ)
N∏

α=1

cos(λα)

N∏
α=M

cos(λα − λβ)

M∏
α=1
α6=β

1
sin(λα − λβ)

=
M−1∏
α=1

sin(λα)
cos(λα)

× 1
cos(λM )

×
M∑

β=1

M∏
α=N

cos(λα) cos(λβ)
M∏

α=1
α6=β

cos(λα) cos(λβ)

N∏
α=M

cos(λα − λβ)

×
M∏

α=1
α6=β

1
sin(λα − λβ)

Consider the numerator of the first factor in the sum over β:

cosN−1(λβ)
N∏

α=1

cos(λα) =
N−1∏
α=1

cos(λβ)× cos(λβ)
N∏

α=1
α6=β

cos(λα)

=
N∏

α=1

cos(λβ)
N∏

α=1
α6=β

cos(λα)

=
N∏

α=1

cos(λβ)
1

cos(λM )

M∏
α=1
α6=β

cos(λα)
N∏

α=M

cos(λα)

=
1

cos(λM )

M∏
α=1
α6=β

cos(λα) cos(λβ)
N∏

α=M

cos(λα) cos(λβ)
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Putting this back into our expression for H
(M)
N gives:

=
M−1∏
α=1

sin(λα)
cos(λα)

× 1
cos2(λM )

×
M∑

β=1

M∏
α=1
α6=β

cos(λα) cos(λβ)
N∏

α=M

cos(λα) cos(λβ)

N∏
α=M

cos(λα − λβ)

×
M∏

α=1
α6=β

1
sin(λα − λβ)

=
M−1∏
α=1

sin(λα)
cos(λα)

× 1
cos2(λM )

×
M∑

β=1

1
N∏

α=M

cos(λα − λβ)
cos(λα) cos(λβ)

M∏
α=1
α6=β

1
sin(λα − λβ)

cos(λα) cos(λβ)

(3.5.3)

Using the standard identities:

sin(x− y) = sin(x) cos(y)− cos(x) sin(y)

cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

we can simplify (3.5.3) to:

=
M−1∏
α=1

sin(λα)
cos(λα)

× 1
cos2(λM )

×
M∑

β=1

1
N∏

α=M

cos(λα) cos(λβ)− sin(λα) sin(λβ)
cos(λα) cos(λβ)

×
M∏

α=1
α6=β

1

(
sin(λα) cos(λβ)− cos(λα) sin(λβ)

cos(λα) cos(λβ) )

=
M−1∏
α=1

tan(λα)× 1
cos2(λM )

×
M∑

β=1

1
N∏

α=M

1− tan(λα) tan(λβ)

×
M∏

α=1
α6=β

1
tan(λα)− tan(λβ)

Making the substitution tan(λγ) = uγ :

H
(M)
N = (1 + u2

α)
M−1∏
α=1

uα ×
M∑

β=1

N∏
α=M

1
1 + uαuβ

M∏
α=1
α6=β

1
uα − uβ
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Now the homogenous limit is equivalent to letting uα → u. If we do this we will

still have a singularity in the second product. To resolve this, we will only take the

limit of some uα terms and, for now, let the rest remain variables:

uα → u, α = M . . .N

uα → u− (M − α)ε, α = 1 . . .M − 1

where the homogeneous case is equivalent to ε → 0. Our expression for H
(M)
N

becomes:

H
(M)
N =(1 + u2)

M−1∏
α=1

(u− (M − α)ε)×
M∑

β=1

N∏
α=M

1
(1 + u(u− (M − β))ε)

×
M∏

α=1
α6=β

1
u− (M − β)ε− u− (M + α)ε

=(1 + u2)
M−1∏
α=1

(u− (M − α)ε)×
M∑

β=1

1
(1 + u(u− (M − β))ε)N−M+1

×
M∏

α=1
α6=β

1
(α− β)ε

We can take ε → 0 in the first product, and take out εN−M in the final product to

give

H
(M)
N =(1 + u2)uM−1 ×

M∑
β=1

1
(1 + u(u− (M − β))ε)N−M+1

× 1
εM−1

M∏
α=1
α6=β

1
(α− β)

=(1 + u2)uM−1
M∑

β=1

1
[1 + u2 − u(M − β)ε]N−M+1εM−1

M∏
α=1
α6=β

1
α− β

Summing over M − β = M − 1,M − 2, . . . 0 is the same as summing from

β′ = 0, 1, . . . M − 1. Which we can rewrite as:

H
(M)
N =(1 + u2)uM−1

M−1∑
β=0

(−1)M−1

[1 + u2 − uβε]N−M+1εM−1

M−1∏
α=0
α6=β

1
α− β

We now use the binomial identity:
M−1∏
α=1
α6=β

1
α− β

=
(−1)β

β!(M − β − 1)!
=

(−1)β

(M − 1)!

(
M − 1

β

)
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Our expression for H
(M)
N becomes:

H
(M)
N =(1 + u2)uM−1

M−1∑
β=0

(−1)M−1

[1 + u2 − uβε]N−M+1εM−1

(−1)β

(M − 1)!

(
M − 1

β

)

=
(1 + u2)uM−1(−1)M−1

(M − 1)!

M−1∑
β=0

(−1)β

[u( 1
u(1 + u2)− βε)]N−M+1εM−1

(
M − 1

β

)

=
(1 + u2)uM−1(−1)M−1

(M − 1)!uN−M+1

M−1∑
β=0

(−1)β

[u−1(1 + u2)− βε]N−M+1εM−1

(
M − 1

β

)

=
(1 + u2)(−1)M−1

(M − 1)!uN−2M+2

M−1∑
β=0

(−1)β

[u−1(1 + u2)− βε]N−M+1εM−1

(
M − 1

β

)

Now we make use of the binomial formula for the M-th derivative7:

lim
ε→0

M−1∑
β=0

(−1)βf(z − βε)
εM−1

(
M − 1

β

)
=

dM−1

dzM−1
f(z)

Where:

f(z) =
1

zN−M+1
, z = 1 + u2

u

We can rewriteH(M)
N :

H
(M)
N =

(1 + u2)(−1)M−1

(M − 1)!uN−2M+2

dM−1

dzM−1
zN+M−1

The M-1-th derivitive of f(z) is:

dM−1

dzM−1
z−(N−M+1) =(−1)M−1[N − (M − 1)][N − (M − 2)] . . . [N − 1]N

=
(−1)M−1(N − 1)!

(N −M)!
z−N

=
(−1)M−1(N − 1)!

(N −M)!
(

u

1 + u2
)N

7Bogoliubov, N. M.; Pronko, A. G.; Zvonarev, M. B, Boundary correlation functions of the

six-vertex model
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Subbing this into or expression for H
(M)
N gives:

H
(M)
N =

(1 + u2)(−1)M−1

(M − 1)!uN−2M+2

(−1)M−1(N − 1)!
(N −M)!

(
u

1 + u2
)N

=
(1 + u2)uN

uN−2M+2(1 + u2)N

(N − 1)!
(M − 1)!(N −M)!

=
u2(M−1)

(1 + u2)F N − 1

(
N − 1

M − 1

)

=
sin2(λ)
cos2(λ)

(M−1)

(1 + sin2(λ)
cos2(λ)

)N−1

(
N − 1

M − 1

)

Multiplying through by (cos2(λ))N−1 leaves us with the result:

H
(M)
N =

sin2(λ)
cos2(λ)

M−1
(cos2(λ))N−1

(cos2(λ) + sin2(λ))N−1

(
N − 1

M − 1

)

= [sin2(λ)]M−1[cos2(λ)](N−1)−(M−1)

(
N − 1

M − 1

)

= [sin2(λ)]M−1[cos2(λ)]N−M

(
N − 1

M − 1

)

This is the expression for the homogenous limit of the free fermion case.

3.6 Summary and Conclusion

In chapter 1, we introduced the theory of vertex models in statistical mechanics,

and explained the graphic representations of partition functions. We considered an

M×N lattice with periodic boundary conditions and found a representation for the

partition function using a transfer matrix. We then introduced the 8-vertex model

and found a solution to the Yang-Baxter equations in terms of Boltzmann weights

that are parameterized by elliptic function.

In chapter 2, we considered the special case of the 6-vertex model, which let Boltz-

mann weights become parameterized by hyperbolic trigonometric functions. We

then constructed algebraic expressions for the eigenvectors of the transfer matrix,
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which we could then use to evaluate the partition function in n the homogeneous

case (where all vertical rapidities are equal, and all horizontal rapidities are also

equal).

In chapter 3, we considered moved to the 6-vertex model in inhomogeneous case

(all rapidities are now independent variables) on an N ×N square lattice with do-

main wall boundary conditions. We then used the determinant form of the partition

function to calculate the values of two kinds of boundary 1-point function in the

presence of domain wall boundary conditions, and found the exact value of one of

these in the homogenous limit for the free fermion case.

Clearly, the algebraic Bethe ansatz (ABA) is a powerful tool for finding exact so-

lutions of physical models and computing physical quantities. This is was only the

tip of what is actually a very vast subject.
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