Chapter 8
Aspects of the Fractional Quantum Hall Effect
in Graphene

Tapash Chakraborty and Vadim Apalkov

Abstract We present a brief overview of the nature of the fractional quantum Hall
effect (FQHE) in monolayer and bilayer graphene. After a short introduction on the
effect and the pseudopotential description of interacting electrons in the quantum
Hall regime, we discuss in detail the magnetic field effects on electrons in monolayer
graphene. We also briefly discuss the experimental signatures of the effect reported
in the literature. In bilayer graphene, the effect manifests itself in a very different
manner and we discuss in detail the various novel effects one expects there due
to electron-electron interactions. The nature of the collective excitations of Dirac
fermions in trilayer graphene is also briefly discussed. Existence of some exotic
states in bilayer graphene, such as the Pfaffian state is also highlighted. Finally,
we have touched upon the properties of the FQHE states of Dirac fermions on the
surface of a topological insulator.

8.1 A Brief History of the Fractional Quantum Hall Effect

The quantum Hall effects (QHEs), both the integral [1, 2] and fractional [3, 4] QHEs
are undoubtedly two of the most spectacular discoveries of the past century that have
enormously enriched the field of condensed matter physics. Similarly, the theoret-
ical explanation of the fractional QHE (FQHE) by Laughlin [5, 6] was a brilliant
contribution to the annals of many-body physics. The experimental observation of
the QHESs is summarized in Fig. 8.1. A two-dimensional electron gas in ultra-pure
semiconductor materials, subjected to a high magnetic field and very low temper-
atures, i.e., in the extreme quantum limit, exhibits nearly vanishing longitudinal
conductivity, oxy — 0 and formation of steps in the Hall conductance
&2
Oxy =V—,
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Fig. 8.1 Fractional (and
integer) filling factors where
the QHE is observed (adopted
from [71])
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for special values of the quantum number v. The filling factor v is a simple integer
for the IQHE, and a rational fraction v = g, with g being an odd integer, for the
FQHE.

In an ideal (non-interacting and disorder free) two-dimensional (2D) electron
gas, an external magnetic field applied perpendicular to the electron plane influences
the orbital motion of the electron and the energy spectrum is quantized into highly
degenerate Landau levels with energies

1
£ = (n + §>hwc,

where w, = eB/m* is the cyclotron energy (~10 meV for a magnetic field of B =
10 Tesla). The number of states per unit area is Np =eB/h = 1/27162, where £g =

(h/eB)% is the magnetic length. In units of the flux quantum, @9 = h/e, Np =
B/®q. Therefore in an area A, Ny = @/Pg, the number of flux quanta threading
through that area, which is the Landau level degeneracy in area .A. The Landau level
filling factor is then

v=~N,/Np = 2n€(2)ne,

where N, is the number of electrons and 7, is the electron density in the system.
For an integer filling factor, v = j, the lowest j Landau levels are completely
filled. The next electron that is added to the system must then go to the next energy
level which requires a jump across the energy gap hw,. At very low temperatures
where the thermal energy is much lower than the cyclotron energy, the presence of
a gap guarantees a dissipationless flow of current as indicated by the vanishing lon-
gitudinal conductivity. The FQHE occurs when the magnetic field is so strong that
electrons partially fill only the lowest Landau level (LLL). In this case, for noninter-
acting electrons the ground state is macroscopically degenerate. It is the Coulomb
interaction between the electrons that lifts the degeneracy and opens a gap [8, 71].
The origin of the FQHE cannot therefore be understood based on the behavior of
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individual electrons in a magnetic field. It is the behavior of the collective ensem-
ble wherein lies the clue, i.e., in the language of Laughlin [6, 9], it is an emergent
phenomenon. In the words of Stormer, electrons in this state conduct “an elaborate,
mutual, quantum-mechanical dance” [4]. The nature of that state is discussed below.

8.1.1 A Novel Many-Body Incompressible State

The problem we face in describing the origin of the FQHE! can be clearly stated. We
have at our disposal, N, two-dimensional electrons moving on a plane perpendicu-
lar to a magnetic field B. The field is so strong that the energy separation between
adjacent Landau levels and the spin Zeeman energy are far greater than the char-
acteristic energy scale of the electron-electron (Coulomb) interactions. Mixing of
Landau levels can then be safely neglected. In that case, our job at hand is to evalu-
ate the energy spectrum and the wave functions of the system in the lowest Landau
level. We also need to determine the nature and origin of the excitation gap. It is
seemingly an intractable many-body problem with no small parameter present.

In 1983, just a year after the report of the discovery of the FQHE, Laughlin
proposed, based on an inspired guess, the celebrated trial wave function for the
many-electron state in the LLL [5]

Wyer--an) = [ [ =2 exp(— > |Zi|2/4) 8.1

i<j i
where z = x + iy is the (complex) electron position and ¢ is an odd integer thus
satisfying the antisymmetry requirement. By counting the maximal power of each
z; one can easily verify that the wave function given above corresponds to v = 1
when N, — oo [71]. An important property of this wave function is that, it van-
ishes as the g-th power when one electron approaches the other [71]. This property
minimizes the Coulomb interaction energy and hence the ground state energy. The
wave function describes a uniform density charge-neutral liquid state in which the
electrons condense [71].

Laughlin then explained why the v = % state is so special. The many-electron
system at this filling factor is in fact, incompressible, and there exists an energy
gap. The energy gap implies that there is a positive discontinuity in the chemical
potential at this filling factor [11], which means a vanishing compressibility. The
chemical potential jump has indeed been measured experimentally for the FQHE
states [12]. Starting with the v = ql state if we increase or decrease the number
of states by one, elementary excitations containing fractional charge, e* = F< are
created [71]. These ‘quasiparticles’ also obey fractional statistics [13].

In this brief introduction to the FQHE, we limit ourselves only to the description of the filling
factor v = é Interested readers could consult other sources for a more detailed account [8, 10, 71].
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Laughlin’s theory for the FQHE is like good poetry in physics, rich in profound
ideas that has inspired researchers for decades and even from many other subfields
of physics [14]. Its novel concepts on correlated quantum fluids were certainly un-
conventional in the field where it was applied, viz. the semiconductors. In explaining
a truly remarkable macroscopic quantum phenomenon, Lauglin opened a floodgate
of novel ideas with a flow that is yet to subside. Description of all those ideas is
however, far beyond the scope of this brief introduction.

8.1.2 Pseudopotential Description of Interacting Electrons

In the FQHE regime where the magnetic field is so strong that the spacing between
the Landau levels are (in the absence of any disorder) much larger than e.g., the
thermal energy, and all the degree of freedom are confined to a single Landau level.
In that situation, the Hamiltonian of the system is simply the projected interparticle
interaction. Haldane was the first to point out [15] that the interaction energy of a
pair of particles with the same Landau indices can be written as

o0
Hij=Y_ VPl

m=0

where Pi’? projects the pair of particles i, j onto the relative angular momentum .
Antisymmetry of the electron wave function dictates that m is an odd integer. The
parameters V,, are the so-called Haldane pseudopotentials, which are defined as the
energy of two electrons with the relative angular momentum m. They are determined
by the structure of the wave functions of the corresponding Landau level and for the
n-th Landau level can be found from the following expression [15]
o0
v = / ;l—qu(w[Fn(q)]sz (49)e, (8.2)
0 T

where L,,(x) are the Laguerre polynomials, V(g) = 2me? /(kgq¥p) is the Coulomb
interaction in the momentum space, k is the background dielectric constant, and
F,(g) is the form factor of the n-th Landau level. The form factor is completely de-
termined by the n-th Landau level wave functions. For conventional semiconductor
systems, the form factors have the following form

Fu(q) = La(q%/2). (8.3)

Therefore, any translationally and rotationally invariant two-body interaction, pro-
jected to a single Landau level can be described completely by a set of pseudopo-
tentials.

For the repulsive Coulomb potential, the pseudopotentials decrease with increas-
ing value of m [15]. In this context, it is interesting to note that the Laughlin state at
V= é, with g being an odd integer, is quite unique. It has the property

PZW’L =0, form<gq.
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The v = % Laughlin state is a zero-energy eigenstate with only V,,(m < q) being
non-zero. As the mean squared distance between the electrons is proportional to g
[71], the model potential is of short range. However, Haldane pointed out [16] that,
when one varies the pseudopotentials between a hard-core model with only non-
zero V1 and the true Coulomb system, the overlap between the true ground state (in
finite-size systems) and the Laughlin state is extremely good. This explains why the
Laughlin state captures the essential physics of the FQHE state by being close to the
exact ground state. It was also noted by Haldane that the pair interaction potential
‘H;; after projection into the subspace of fixed Landau index is discrete [15]. This
is the central feature of the physics underlying the incompressible many-electron
states that gives rise to the FQHE [8, 15].

8.1.3 Composite Fermions and the Fermion-Chern-Simons Theory

In addition to the primary filling factors, v = L (with g as an odd integer), which cor-
respond to the Laughlin states, the FQHE was also observed in many other higher-

order fractional fillings of the Landau levels, such as v = % % ;—‘, and so on [3, 71].

Some of those filling factors, such as v = %, can be explained by the particle-hole

symmetry [71], while the presence of other filling factors can be described within
the composite fermion approach [17-19] and the Chern-Simons theory [20, 21].
The hierarchy of the FQHE states based on the composite fermion picture is con-
structed in the following way [17-19]. If the many-electron system is placed in a
magnetic field B* such that the filling factor of the system is v* = ng®y/B*, where
ng is the electron density, then by multiplying the corresponding multi-particle wave
function, ¥* by a symmetric factor

Fp(Z1,...,ZN)=l_[(Zj—Zk)2p (8.4)
Jj<k

where p is a positive integer, we construct the wave function, ¥ = F,¥* corre-
sponding to a new filling factor v. To find the relation between v* and v we notice
that the factor F), introduces an additional effective magnetic field, AB =2pno®q
in the system. In fact, if we consider a particle travelling in a large orbit covering
an area A and encloses ng.A other particles, then due to the additional factor F D
that particle acquires an extra phase factor 2p2mngA =27 (ABA/Py). Therefore,
the additional factor, F), in the many-particle wave function can be thought of as an
extra magnetic field, AB. Then the relation between the magnetic field B*, corre-
sponding to the filling factor v* and the new magnetic field B becomes

B =B*+ AB=B* +2png®y= B*(1+2pv*). (8.5)
Therefore, the filling factor corresponding to the wave function ¥, i.e., for ng parti-

cles in a magnetic field B, is

v*

- 8.6
YT 8.6
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Multiplying the many-particle wave function by the complex conjugated factor F*,

we can construct the wave function corresponding to the filling factor 2[):—:_1 The
factor F, thus introduces 2 p magnetic flux quanta attached to each electron, thereby
creating a composite fermion. On average, such magnetic fluxes produce an effec-
tive magnetic field, A B. If we start with completely filled Landau levels with integer
filling factor n, then multiplication by the factor F, i.e., attaching the magnetic flux
quanta to the electrons produces the fractional filling factors of the form

n

=—. 8.7
v 2pn+1 @7

As an example, for n =2, p =1 we obtain v = % Therefore, the integer filling fac-
tor of the composite fermions, i.e., electrons with even number of flux quanta, cor-
responds to fractional filling factor of real electrons. Since the ground state of the
composite fermion system is incompressible, we can assume that the ground state
of actual electrons with fractional filling is also incompressible. Numerical compar-
ison of composite fermion wave functions and the exact wave functions evaluated
in finite-size systems shows that the composite fermion approach indeed provides a
good description of the FQHE ground states at general filling factors. The composite
fermion description of FQHE states is closely related to the Chern-Simons theory
of the quantum Hall systems [20, 21]. Within the Chern-Simons theory, a gauge
Chern-Simons magnetic field is introduced through an unitary transformation. Such
a gauge field introduces an even number of magnetic flux quanta attached to the
electrons. Within the mean-field approximation, the Chern-Simons magnetic field is
replaced by an uniform average magnetic field, which reproduces the same effective
filling factors as in the composite fermion approach. In the Chern-Simons approach,
one can go beyond the mean-field approximation and calculate low-energy excita-
tion properties of the quantum systems. One of the applications of the Chern-Simons
theory is the description of the v = % quantum state. In this case an external mag-
netic field exactly cancels the mean Chern-Simons field and the composite fermions
experience no average magnetic field. Therefore the v = 1/2 quantum system in this
picture is equivalent to an electron system in the absence of an external magnetic
field. Experimental indications of such a situation, e.g., the existence of a Fermi
surface [22] at this filling factor provides ample support for this theoretical picture.

8.2 The Advent of Graphene

Just when everyone thought the glory days of the QHEs are perhaps over, along
came graphene [23-25]. It is a single sheet of carbon atoms arranged in a honey-
comb (hexagonal) lattice, often described as a molecular chicken wire where one
carbon atom sits at each 120° corner. This material is perhaps the most interest-
ing two-dimensional system possible, with unique electronic properties that are en-
tirely different (and unexpected) from those of conventional two-dimensional sys-
tems [26]. The electronic band structure of graphene was theoretically studied as far
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Fig. 8.2 The honeycomb
lattice structure of graphene
with two sublattices A and B.
Within the nearest neighbor
tight-binding approximation
the atoms of sublattice A are
coupled to atoms of
sublattice B through the
hopping integral yg

back as 1947 [27]. Electrons and holes in graphene are described as ‘massless Dirac
fermions’ because of their linear energy dispersion near the Fermi surface [28].
Graphene is a bipartite lattice made up of two interpenetrating triangular sublat-
tices that provides a new degree of freedom for the electronic state, the pseudospin.
Transport properties of graphene exhibit many novel features, most notably (in our
context), the room temperature QHE [29]. Bilayer graphene has also proven to be
rich with unique properties, e.g., the gate tunable band gap. Here the energy disper-
sion corresponds to that of massive chiral fermions. A detailed account of all these
can be found in a review article by the present authors [30].

Since its isolation in 2004 [25], graphene has maintained a dominant presence in
the community. By August 2011, there were more than 11,000 publications with the
word ‘graphene’ in their titles. With the continued plethora of articles, most notably,
the superabundance of review articles [25, 28, 30-48] about various properties of
graphene makes it abundantly clear that our fascination with this system is far from
being over, and one expects more surprising discoveries in the coming years.

8.2.1 Massless Dirac Fermions

The two-dimensional lattice of graphene has the honeycomb structure, consist-
ing of two inequivalent sublattices of carbon atoms, say A and B (Fig. 8.2). The
nearest-neighbor tight-binding description of graphene results in a band structure
with the Fermi level located at two inequivalent points, K = (2 /a)(%, %) and

K =(Q2n /a)(%, 0), of the first Brillouin zone. Here a = 0.246 nm is the lattice con-
stant. The tight-binding approximation is valid over a wide range of energy. Within
the effective mass approximation which addresses the low-energy properties, these
points correspond to two valleys, K and K. In each valley the low-energy electron
dynamics near the Fermi energy is described by the following Hamiltonian [28]

. 0 p-
HE - SUF <p+ O > ’ (88)

where p_ = p, —ipy, p+ = px +ipy, and p is the two-dimensional momentum
of an electron. Here vp ~ 10° m/s is the Fermi velocity, which can be related to
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the hopping integral, yo, between the nearest neighbor sites, vy = v/3ypa/2%. The
index & is 1 and —1 for valleys K and K’, respectively. Without the spin-orbit inter-
action [49-51], each level determined by the Hamiltonian (8.8) has a two-fold spin
degeneracy. The wave functions corresponding to the Hamiltonian (8.8) have two
components belonging to sublattices A and B, and can be expressed as (4, ¥p)”
for valley K and (g, ¥4)! for valley K’, where 14 and v/ are wave functions
of sublattices A and B, respectively. The superscript 7" indicates the transpose of a
vector.

The single-electron states obtained from the Hamiltonian (8.8) has a linear dis-
persion relation given by

e(p) ==xvrp, (8.9)

which is the dispersion relation of Dirac “relativistic”” massless particles. In addition
to spin degeneracy, each energy level has a two-fold valley degeneracy. The smooth
impurity potentials or electron-electron interactions introduce coupling of different
valleys. However, due to the large momentum separation of the valley states this
coupling is weak and can be safely ignored.

8.2.2 Landau Levels in Graphene

In the tight-binding model the magnetic field is introduced through the Peierls sub-
stitution which introduces a magnetic field dependence of the hopping integrals.
Within this approach the Landau levels with low, intermediate and very high in-
dices can be obtained. Formation of the incompressible liquids in graphene due
to electron-electron interactions is expected to occur at low Landau level indices.
To study those Landau levels the effective mass approximation described by the
Hamiltonian (8.8) is fully adequate. The magnetic field is introduced in the Hamil-
tonian (8.8) by replacing the electron momentum p with the generalized momentum
T =P+ eA/c where A is the vector potential. Then the Hamiltonian of an electron
in a perpendicular magnetic field in valley £ takes the form

He =Evp (n(l ”0‘) . (8.10)

The eigenfunctions of the Hamiltonian (8.10) can be expressed in terms of the con-
ventional Landau wave functions, ¢, , [52], for a particle obeying the parabolic
dispersion relation with the Landau index n and intra-Landau index m, which de-
pends on the choice of the gauge. For example, in the Landau gauge, Ay = 0 and
Ay = Bx, the index m is the y-component of the momentum, while in the symmetric
gauge, A = %B X r, the index m is the z-component of electron angular momentum.
For these wave functions, ¢, »,, the operators w4 and m_ are the raising and low-
ering operators, respectively. This means that they increase or decrease the Landau
level index, n:
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UFJT+¢n,m = —ihwpvn + 1¢n+l,ma
UF7T—¢n,m zith\/ﬁd)n—l,m,

where wp = V2v r/€o, and £ is the magnetic length defined in Sect. 1. The Landau
eigenfunctions of the Hamiltonian (8.10) can then be written in the form

in_le‘/J’nfl m
Yym = . ), 8.11
o ( lnX2¢n,m ( )
where the coefficients x; and x» satisfy the following eigenvalue matrix equations
ex1=—Ehwpx2 (8.12)
ex2=—§hwpx1. (8.13)

The resulting discrete Landau energy spectrum has both negative (valence band)
and positive (conduction band) values, which are described by introducing integer
values for the Landau index n = 0, 1, +2, ..., which also include the negative
values of n. In terms of n, the Landau energy spectrum of electrons in graphene
takes the form

&n = hwp sgn(n)y/|n], (8.14)
where
0 (n=0)
sgn(n) =14 1 (n>0) (8.15)
-1 (n<0).

Each energy level (8.14) has a two-fold valley degeneracy. The wave functions cor-
responding to the Landau levels (8.14) can be obtained from (8.12)—(8.13) in the
following form

|n|—1
gk _ wA) =C, (Sgn(n)'l ¢|n|—l,m>’ .16
m (I/IB ¢ llnl(pln\,m ( )
for valley K (¢ = 1) and
K _(V¥B)_ Sgn(ﬂ)i|”1¢|n|—1,m>
Yo = (WA) =Cy ( i|"|¢|n\,m , (8.17)

for valley K’ (¢ = —1). Here C,, = 1 forn=0and C,, = 1/\/5 for n # 0.

The Landau levels in graphene have a square-root dependence on both the mag-
netic field and the Landau level index. For vy ~ 10° m/s, the Landau level energy
spectrum takes the form, ¢, =~ 36+/B[Tesla]s/n (meV). This behavior is clearly dif-
ferent from that in conventional (henceforth called non-relativistic to distinguish it
from the graphene system) semiconductor 2D system with a parabolic dispersion re-
lation, for which the energy spectrum has a linear dependence on both the magnetic
field and the Landau level index. As an example, for the GaAs system the Landau
energy spectrum is 8,(,;‘““ = hw:(n + %) ~ 1.7B[Tesla](n + %) (meV). The Landau
level spectra for graphene and for the GaAs systems are shown in Fig. 8.3, which

illustrates their different behaviors.
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Fig. 8.3 The Landau levels

as a function of the 300
perpendicular magnetic field
for graphene (red solid lines)
and a GaAs system (black
solid lines). Numbers next to
the lines are Landau level
indices. In the case of
graphene, only the Landau
levels with positive energy,
corresponding to the
conduction band, are shown
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It is noteworthy that the n = 0 Landau level in graphene has zero energy at all
values of the magnetic field. It is populated equally by electrons and holes. The
wave functions at this Landau level are identical to those of n = 0 non-relativistic
Landau level [see (8.16)—(8.17)]. Therefore the interaction properties and the FQHE
of the n = 0 Landau level in graphene are the same as for the non-relativistic n = 0
Landau level. The wave functions in higher Landau levels (|n| > 1) are mixtures of
non-relativistic Landau wave functions belonging to different Landau level indices.
Therefore the interaction effects in these Landau levels should be very different
from those of the non-relativistic systems. The nature of the Landau levels, in par-
ticular the lowest level, can be effectively studied by measuring the quantum Hall
activation gaps in graphene. Measurements of the inter-Landau level activation gap
in graphene [53] revealed that the lowest LL is very sharp in contrast to the broad-
ened higher LLs, and the measured gap between the zeroth and the first Landau level
approaches the bare Landau-level splitting for high magnetic fields.

8.2.3 Pseudopotentials in Graphene

As mentioned earlier, the interaction properties of electrons within a single Lan-
dau level are completely determined by the Haldane pseudopotentials (8.2). With
the known wave functions (8.16)—(8.17), the form factors in (8.2), can be readily
evaluated. For the n-th graphene Landau level,” they are given by the following
expressions [see (8.3)] [55, 72]

Fo(q) = Lo(q%/2) (8.18)

1
Fu(q) = E[Ln(qz/z) + Lo—1(¢4%/2)]: (8.19)

21f not otherwise stated, in what follows, we consider the positive values of n.
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Fig. 8.4 The Haldane ~ - =0 (graphene), n=0 (non-relativistic)
pseudopotentials shown as a ® 0.8 - n=1 (graphene)
function of the relative [S) L .
angular momentum for 2 06lo =1 (non-relativistic)
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With these form factors the pseudopotentials for graphene are then calculated
from (8.2). The pseudopotentials are given in units of the Coulomb energy, ec =
e? /iy, where « is the background dielectric constant of the system.

To compare the interaction properties of graphene and the conventional non-
relativistic systems, we present in Fig. 8.4 the pseudopotentials calculated from (8.2)
for graphene and for the non-relativistic system. Since the FQHE can be realized
only in the low-index Landau levels, in Fig. 8.4 the results are shown only for small
values of n (n < 2). As it was mentioned above, for n = 0 graphene and a non-
relativistic system have the same pseudopotentials [Fig. 8.4(a)]. In a higher Landau
level index there is an important difference in the behavior of the pseudopotentials
in these two systems. More specifically, for n = 1, the graphene system shows a
stronger electron-electron repulsion, i.e., a larger pseudopotential, at small relative
angular momentum, m < 2, and a weaker repulsion at a large angular momentum,
m > 2, compared to that for a non-relativistic system [Fig. 8.4(a)]. Based on the
general properties of the Laughlin incompressible state, we can conclude that the
stronger repulsion at small values of the angular momentum implies a more stable
FQHE state.

In Fig. 8.4(b), the pseudopotentials of graphene are shown for different Landau
levels. Due to the antisymmetry of the electronic wave functions, only the pseudopo-
tentials with odd relative angular momenta contribute to the spin-polarized FQHE
states. Hence only the pseudopotentials with m = 1, 3,5, ... determine the spin-
polarized, and in the case of graphene, the valley-polarized properties of the system.
For these values of m the pseudopotentials in the n = 1 Landau level show an in-
teresting behavior: while for m =3 and 5 the pseudopotential, V,,(,"), monotonically
increases with n, and for m = 1, the pseudopotential Vl(") has a maximum at n = 1
[see inset in Fig. 8.4(b)]. Therefore the electrons with relative angular momentum
m = 1 show the strongest repulsion in the n = 1 Landau level. This is different from
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Table 8.1 Characteristics of

n) v, (n) (n) ,y,(n)
Haldane pseudopotentials for Vit Vs V3T Vs
graphene and for
conventional electron systems 7 = 0 (graphene) 1.60 1.26

n = 0 (non-relativistic) 1.60 1.26

n =1 (graphene) 1.68 1.33

n = 1 (non-relativistic) 1.32 1.36

the behavior of a non-relativistic system, where the strongest repulsion is in the
lowest n = 0 Landau level.

The stability of the incompressible FQHE state, i.e., the magnitude of the FQHE
gap, depends on how fast the pseudopotentials decay with increasing relative an-
gular momentum. For spin and valley polarized electron systems this decay is de-
termined by the ratios V" / V" and V3(”)/ VS("). The larger the ratios, the more
stable is the FQHE. In Table 8.1, the values of the ratios are shown for graphene
and for non-relativistic systems in the two lowest Landau levels with n =0 and 1.
These values clearly indicate that Vl(") / \/3(") has the largest value for graphene in
the n = 1 Landau level which suggests that the gaps of the FQHE states should have
the largest value in graphene in the n = 1 Landau level.

8.2.4 Nature of the Incompressible States in Graphene

Each Landau level in graphene is four-fold degenerate due to two-fold valley and
two-fold spin degeneracies. The spin degeneracy is partially lifted due to the Zee-
man splitting, which is Az = gupB ~ 1.5B [Tesla] (K) ~ 0.13B [Tesla] (meV),
where g &~ 2.2. The symmetry-breaking terms should be compared with the typical
energy of the inter-electron interactions within a single Landau level, which is the
Coulomb energy, ec = e*/k£o. The Coulomb energy determines the magnitude of
the Haldane pseudopotentials and in graphene it is e¢c ~ (54/«)+/ B [Tesla] (meV).
For k¥ & 4 the Coulomb energy becomes ¢c ~ 144/ B [Tesla] (meV). Due to the
small value of the dielectric constant, the Coulomb energy in graphene is a few
times larger than the corresponding energy in a non-relativistic system, where the
dielectric constant is about k¥ ~ 13. Although the Coulomb interaction in graphene
is strong, it is still less than the inter-Landau level spacing. For example, the
energy separation between the n = 0 and n = 1 Landau levels in graphene is
364/ B[Tesla] (meV) (see Sect. 8.2.2). The Coulomb interaction also introduces the
valley-symmetry breaking terms [55, 56], which are algebraically small in a/£¢. For
typical values of the magnetic field, the Zeeman energy in graphene is almost two
orders of magnitude smaller than the Coulomb energy, Az/ec ~ 0.01/B [Tesla],
and within a good approximation, a single Landau level in graphene can be con-
sidered as the four-fold degenerate level. Electrons within a single Landau level
therefore have the SU(4) symmetry with weak symmetry breaking terms due to the
Zeeman splitting and the valley asymmetry terms in the interaction Hamiltonian.
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The properties of the FQHE are determined by the nature of the ground states,
e.g., valley or spin polarization of the ground states, and the value of the FQHE gap,
which characterizes the stability of the FQHE with respect to the temperature and
the disorder. Theoretically, the FQHE states are generally studied by numerical di-
agonalization of the Hamiltonian matrix for finite-size electron systems in either the
planar (torus) or the spherical geometry [71]. In the spherical geometry [16, 57-59]
the magnetic field is introduced in terms of the integer number 25 of magnetic flux
quanta through the sphere in units of the flux quantum. Then the radius of the sphere
R is defined as R = +/S{y. The single-electron states are characterized by the an-
gular momentum S, and its z component, S;. The number of available states in a
sphere is (25 + 1). These states correspond to a single Landau level in the planar
geometry. Then for a given number of electrons N, the parameter S determines the
filling factor of the Landau level. In the thermodynamic limit, the filling factor is
v = N,/(2S + 1), but the exact relation between the FQHE filling factor and the
number of electrons depends on the type of the FQHE state. In the spherical geome-
try, the many-particle states are described by the total angular momentum L and its
z component, while the energy depends only on L. For the many-electron system
only the lowest eigenvalues and eigenvectors of the interaction Hamiltonian matrix
are calculated [58]. These eigenstates determine the nature of the ground state of the
system and its neutral collective excitation gap. By varying the magnetic field flux
through the system the charged excitations can be also studied.

The valley and spin polarizations of the ground states at the major FQHE fill-
ing factors, ;, 2, and , were studied numerically for » = 0 and » = 1 Landau
levels [62, 73, 75]. It was found that in the n = 0 Landau level the v = % ground
state is valley and spin polarized, but the v = % and v = % ground states are valley
unpolarized [56, 73, 75]. This behavior is similar to the non-relativistic 2D sys-
tem with zero Zeeman splitting, i.e., with the SU(2) symmetry. For the n = 1 level
the graphene system however shows a different behavior. In this case, the ground
states at v = 3 3 ,and 2 % are all valley polarized [75]. It was also shown that for the

graphene system in the n = 0 Landau level with filling factor v =2 + 3, the 1 3 state
is valley polarized even at a small Zeeman splitting [62].

The gaps of the FQHE states, i.e., the stability of the incompressible states, are
determined by the Haldane pseudopotentials. From the general analysis of the pseu-
dopotentials in different Landau levels we can conclude that the FQHE is more
stable in the n = 1 Landau level in graphene. Therefore the largest FQHE gap is
expected in the n = 1 Landau level. This property is illustrated in Fig. 8.5, where
the energy spectra of the valley and spin polarized electron system at filling factors
% and % are shown. In the spherical geometry, the filling factors v =1/q (g is an
odd integer) are realized at S = (¢/2)(N, — 1). The ground state of the 1/g FQHE
is well described by the Laughhn function [5, 71].

The energy spectra of the v = 3 | FQHE system is shown in Fig. 8.5(a) for N, = 8
electrons at the n = 0 and n = 1 Landau levels. The energy spectra in the n =0
Landau level for graphene and the non-relativistic 2D system are exactly the same
with the same value of the excitation gap. For a non-relativistic system this is the
largest excitation gap of the v = 1 FQHE state. That is not the case with graphene



264 T. Chakraborty and V. Apalkov

f‘lg. 8.5 (a) The energy 02r, -~ . Y 3 § %
pectra of an eight-electron 5 % % % § % X g
V= %—FQHE system shown ¢ *
for different Landau levels: x e e o
n =0 (stars) and n = 1 (filled ;:0 01 x ) o 2 x *X
circles). The flux quanta are — *
28 =21. (b) Energy spectra g (a)
of the six-electron =
v= %—FQHE system is S 000w L L L L L L L L L
shown for different Landau £ 0.2
levels: n = 0 (stars) and = e i ~ i " i 0 e
n =1 (filled circles). The flux 5 x e 2 [
quanta here are 2§ =25 b . 2 2 »

01} L2

* (b)
-
0.0} ¥ 1 1 1 1 1 1 1 1 1 1

0o 1 2 3 4 5 6 7 8 9 10
Angular momentum, L

where the FQHE gap has the largest value in the n = 1 Landau level [Fig. 8.5(a)].
For smaller filling factors, i.e., at v = %, the pseudopotentials with larger values of
the relative angular momentum determine the properties of the system. As a result,
the difference between the FQHE states in the n = 0 and n = 1 Landau levels be-
comes less pronounced, which is illustrated in Fig. 8.5(b) for N, = 6 electrons and
at the filling factor v = % This tendency is completely different from that of the
non-relativistic systems where the FQHE is strongly suppressed in the n = 1 Lan-
dau level. A similar conclusion about the unique interaction properties of the n = 1
Landau level in graphene was reported in Ref. [73], where the properties of the
FQHE states in graphene and GaAs systems were compared. In the n = 0 Landau
level the graphene system becomes similar to the GaAs system, while in the n = 1
Landau level, only the graphene system exhibits stable FQHE states.

The spectra shown in Fig. 8.5 correspond to the polarized neutral excitations of
the electron system and illustrate the relative strength of the electron-electron inter-
actions at different Landau levels in graphene. Due to the valley degeneracy of the
Landau levels in graphene, valley unpolarized excitations, which are of the type of
valley skyrmions, can have lower energies than those for polarized excitations. Nu-
merical analysis indicates that the lower-energy charged excitations at major filling
factors, v = %, % and %, are unpolarized valley skyrmions [75].

For the SU(4) symmetric graphene electron system, i.e., at small Zeeman split-
ting, new types of FQHE states at filling factors v =¢/(2pg £ 1) with ¢ > 3 were
also proposed [63] in the n = 0 and n = 1 Landau levels. These states are expected
in graphene because of the interplay between the spin and valley degrees of freedom.

From the discussions above, it is quite clear that the electron-electron interactions
in graphene are more pronounced in the n = 1 Landau level, which should result in
more stable FQHE states with large excitation gaps in the n = 1 Landau level. This
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is opposite to what we observe in a non-relativistic 2D system, where the strongest
interactions are realized in the n = 0 Landau level.

8.2.5 Experimental Observations of the Incompressible States

As explained in earlier chapters, experimental demonstration of the quantum Hall
plateaus at filling factors v = 4(g + %) [11, 12] quite convincingly confirmed the
Dirac nature of electron dynamics in graphene that was purely non-interacting and
devoid of any effects due to interactions among the electrons. Interestingly, any col-
lective behavior due to electron-electron interactions, akin to the FQHE was found to
be very difficult to observe. This is notwithstanding the strong unscreened Coulomb
forces that were supposed to exist between the charge carriers. Taking the cue from
earlier studies of the FQHE in a conventional two-dimensional electron gas (2DEG),
it was clear that experimental observation of these states crucially depends on sig-
nificantly high-quality samples where the Coulomb energy scale far exceeds that
of the impurity-induced random potential fluctuations. Such a significant improve-
ment in sample quality was indeed achieved in suspended graphene (SG) samples,
where the substrate-induced perturbations were entirely eliminated [66, 67]. Obser-
vation of the quintessential %-FQHE in suspended graphene was first reported by
two groups [68—70]. Observation of a few other fractions followed soon after.

It has been correctly pointed out by Skachko et al. [71] (also elaborated in the
previous subsection) that the FQHE in graphene can be expected to deviate from that
in conventional 2DEG in several important ways. First of all, electrons in graphene
are dynamically more two dimensional than in semiconductor quantum wells, where
the well widths range from 10-30 nm. This implies that the interaction at short dis-
tances in graphene is much stronger than in conventional quantum wells. Secondly,
electron-electron interactions in SG are enhanced even further due to the absence
of substrate screening (x ~ 1) as compared to, e.g., in GaAs, where « ~ 13. This
enhanced interaction in graphene leads to a larger gap [72], and therefore the FQHE
state persists at much higher temperatures. Finally, due to the four-fold spin and
valley degeneracy, the situation in graphene resembles more like what would be
realized in a double quantum well system, rather than a single quantum well. How-
ever, unlike in a GaAs system, the intra- and inter-well interactions in graphene are
almost identical. This suggests the existence of new FQHE states which are absent
in conventional systems [72, 73].

Experimental results of Andrei et al. [68, 69, 71] for quantum Hall plateaus at
V= % in monolayer SG are shown in Fig. 8.6(a) for various values of the applied
magnetic field. These authors noted that the plateau at the % filling factor was very
robust—it appeared at ~2 Tesla at low temperatures (~1 K) and persisted up to
20 K at B = 12 Tesla. The robustness of the FQHE states can be further assessed by
studying the excitation gap [71]. The temperature dependence of the diagonal resis-
tivity oy, (or diagonal conductivity oy, since oy ~ Pyx/ ,ofy near the py, minima)
is interpreted as the activation energies in the FQHE [73-75]. These energies are
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Fig. 8.6 The results of Andrei et al. [68, 69, 71]: (a) Gate voltage dependence of resistance for
a suspended graphene sample shown at different magnetic fields and at temperature 1.2 K. The
plateaus at v =1, 2, and % are clearly visible. (b) The activation gapatv=1and v = % obtained
from the temperature dependence of the diagonal conductivity

@ I Zuk

- n=19x10"em?

n=08x10"em?

— n=086x10"em?

O.. . 5 o :

B(T) 10 B(T) 10

Fig. 8.7 Results of Kim et al. [70, 77]: The Hall resistance and the diagonal resistance as a function
of the magnetic field for two samples in four-terminal measurements

attributed to the energy gaps of the incompressible state at v = 1 that separate the
many-body ground state from the excited states. Measurements of activation gaps
at integer filling factors have been already reported for monolayer [53] and bilayer
[76] graphene.

The activation gap at v = % in monolayer SG, as reported by Andrei et al. [69], is
shown in Fig. 8.6(b). They obtained a value of A /kp =4.4 K at 12 Tesla, where kp
is the Boltzmann constant. The corresponding value at v =1 was A/kp = 10.4 K.
These values are much higher than those in conventional semiconductor structures.
For example, in high mobility GaAs heterostructures, the v = % activation gap is
~ 2 K at 12 Tesla. The larger gap clearly signifies the robust nature of the %—FQHE
state in graphene.

The fractional QHE on ultraclean suspended graphene devices was also reported
by Kim et al. in two-terminal [70], and in multi-terminal [77] magnetotransport
measurements (Fig. 8.7). They also observed a remarkable stability of the corre-
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lated state in graphene, as compared to that in a conventional 2DEG, due to the
enhanced electron-electron interaction. The energy gap was measured via thermal
activation, and they reported the gap to be ~ 20 K at 14 Tesla. The hierarchy of
FQHE states observed experimentally [78] in high-mobility graphene samples at
n = 0 Landau level confirms the existence of strong inter-electron interaction in
graphene. For n = 0, this interaction results in a spontaneous breaking of the SU(4)
symmetry (two spin and two valley degrees of freedom) at the FQHE filling factors.
The results in Ref. [78] also suggest a strong interaction between the composite
fermions within the composite fermion description of the FQHE. Therefore in the
composite fermion description of the FQHE in graphene the interaction between the
composite fermions should be taken into account. The large v = 1_FQHE gap in the
n = 1 Landau level observed in Ref. [78] supports the theoretical conclusion about
strong electron-electron interaction in the n = 1 Landau level in graphene. Details
about the measurements by these leading experimental groups can also be found
elsewhere in this book. Finally, magnetotransport measurements on suspended bi-
layer and trilayer graphene systems have also been reported [79]. In bilayer sys-
tems, a small plateau at v = % was observed. The %-FQH state was not observed
in trilayer graphene. More experiments on bilayer graphene would certainly help
resolving many of the novel effects found theoretically and discussed below.

8.3 Bilayer Graphene

Bilayer graphene consists of two coupled monolayers of graphene [80]. Depending
on the orientation of the monolayers, there are two main stacking arrangements
of graphene bilayer: (i) AA stacking and (ii) Bernal (AB) stacking. These two
possibilities are shown schematically in Fig. 8.8. Only the nearest neighbor inter-
layer coupling, characterized by the inter-layer hopping integral, y1, is introduced.
A typical value of inter-layer hopping integral is y; ~ 400 meV. Unlike in mono-
layer graphene, the low energy excitations in bilayer graphene are massive with a
parabolic dispersion. The band structure is gapless. The dispersion can be probed
by measuring the activation gaps between the neighboring Landau levels [76].

The Hamiltonian of a bilayer graphene in a perpendicular magnetic field is de-
scribed by a 4 x 4 matrix, which, within the basis of Hamiltonian (8.10) can be
expressed as

0  wvpm—  &n 0

a4y _ .| vrrye O 0 Eyi
H =g | T 0 e | (8.20)
0 Evi vrmy 0O
for the AA stacking and
0 VETT_ 0 0
AB) _ . | vrmy 0 Eni 0
He o =& 0 £ 0 opr | (8.21)

0 0 VR4 0
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Fig. 8.8 Schematic illustration of two different stacking of bilayer graphene, consisting of two
coupled monolayers of graphene: (a) AA stacking; (b) Bernal (AB) stacking. Each graphene layer
consists of two inequivalent sites A and B. The intra-layer and intra-layer hopping integrals are
shown by yp and y, respectively

for the Bernal stacking. The Hamiltonians (8.20)—(8.21) are expressed in the basis
(A, ¥By. Way. W,)T for the K valley (¢ = 1) and (5, Ya,. Y5, ¥a,)" for the
K’ valley (§ = —1), where the superscript ‘T indicates the transpose of a vector.
Here A1, By and A;, B> correspond to sublattices of monolayers 1 and 2, respec-
tively.

8.3.1 Magnetic Field Effects

In an external magnetic field each monolayer has discrete sets of Landau levels,
which are coupled in bilayer graphene. For the AA and AB stackings the coupling
of Landau levels have different structures. For the AA stacking the coupling oc-
curs between the same Landau levels, i.e., with the same Landau index n, of two
monolayers, resulting in a splitting of the initially degenerate Landau levels of two
monolayers. The wave functions of bilayer graphene with AA stacking have the
following form

¢\n|—l,m
o bi,AA) _ er,’:’nuno) | Pmim (8.22)
nm j:ll/,,(,’fn(’”o) Dn—1m |’ '
¢|n|,m

which shows that the wave functions of bilayer graphene with AA stacking are a
mixture of |n|-th and (|n| — 1)-th non-relativistic Landau wave functions [81]. The
Haldane pseudopotentials of bilayer Landau levels are completely identical to the
corresponding pseudopotentials of the monolayer graphene. Therefore the FQHE in
such a bilayer does not bring in any new features.
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A different situation occurs for the Bernal stacking, which introduces coupling
between different Landau levels of the two layers. The structure of the wave func-
tions of such a bilayer graphene is as follows

Pln|—1,m
p0iAB) | Pmim | 8.23
,m ¢|n|,m ( )
¢|n|+1,m

In this case the wave functions of bilayer graphene correspond to mixtures of the
non-relativistic Landau wave functions with indices n — 1, n, and n + 1. Such a
mixture can modify the interaction within a single Landau level of bilayer graphene
and can influence the properties of the FQHE in this system. In what follows, we
consider only the bilayer graphene with Bernal stacking.

8.3.2 Biased Bilayer Graphene

In addition to the inter-layer coupling, there are few other parameters, which can
control the interaction properties of bilayer graphene. These parameters are inter-
layer bias voltage, U, which can be varied for a given system [82, 83], and the
intra-layer asymmetry, A, in the bottom layer, which is in contact with a substrate.
Such an asymmetry depends on the substrate and results in different on-site energies
for sublattices A1 and Bj. With these additional terms the Hamiltonian of bilayer
graphene with Bernal stacking (for valley & = %-1) takes the form [84]

(AB)
He

Y4201+ VT 0 0
¢ VFTT L Y-20+8 Evi 0
0 En -$+20-9 vpTT-
0 0 VFTT4 -5-20-9
(8.24)
The eigenfunctions of Hamiltonian (8.24) have the following form [see (8.23)]
EC1P1m—1,m
) iCrgp
g b — | 1% 2Plnl.m 8.25
nm lC3¢|n|,m ( )
ECaPinl+1.m

where the coefficients, C, C2, C3, and Cy4, can be found from the following linear
system of equations

eC1=[fu+8(1+8)]C1 —/nC; (8.26)
eCy=[6u—8(1+8)]Ca — /nCi +71C3 (8.27)
eC3=[—Eu—8(1—8)]|C3+Vn+1C4 + 71 C2 (8.28)
eCy=[—Eu+38(1—8)]|Cs +n+1C3, (8.29)
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where all energies are expressed in units of the Coulomb energy, g = hvg /£o, € is
the energy of the Landau level, § = A /(4ep), u =U/(2ep), and y; = y1/€p.-

Then the eigenvalue equation which determines the Landau energy spectrum of
bilayer graphene is given by [85]

[(e +&u)® — 621 —&)® —2n][(e — Eu)* — 8 (1 +&)* —2(n + 1)]
=7ile =8 — w+6)]. (8.30)

For each value of n > 0 there are four solutions of the eigenvalue equation (8.30),
corresponding to four Landau levels in a bilayer graphene for a given valley, £ = +1.
For convenience, let us introduce the following labelling scheme for these Landau
levels. The four Landau levels correspond to two valence levels which usually have
negative energies, and two conduction levels, which have positive energies. Then
the four Landau levels of bilayer graphene for a given value of n (n > 0) and a

given valley, &, can be labelled as nl@), where i = —2, —1, 1, 2 is the label of the
Landau level in the ascending order of energy. Here negative and positive values of
i correspond to valence and conduction levels, respectively. For zero bias voltage,

U =0, and zero intra-layer asymmetry, A = 0, these four Landau levels are

il 2 N
e==+ 2n~|—1+7:|:§\/(2+y12) + 8nyl. (8.31)

In this case each Landau level has two-fold valley degeneracy, i.e., no dependence
on the index £ in (8.31). For finite values of U and A, the valley degeneracy is lifted.
For zero intra-layer asymmetry, A = 0, the Landau energy spectra of two valleys are

not independent. They are related through the equation e(nl@) =—e(n (_7.5)), where

e(nl@) is the energy of the Landau level nl@).

The coefficients C1, C, C3, and C4, determined from the solution of the eigen-
value equation (8.30) and the system of equations (8.26)—(8.29), are expressed as

[SE

c —f_ 2y1n ]

"I e Eu—8(1—£)I(e + £u)2 — 62(1 — £)2 — 2n]
oo s Vile — §u —8(1+£)] T

2T -t —82(1+86)2 -2+ D]

1

B pile +Eu—8(1—8)] 7
C3‘f_[<a+su>2—62(1—s>2—2n]}
c —f_ 291 (n+ 1) ]%
e — s+ B —En) —2(1+E)2 -2+ DI

Here the constant f is determined from the normalization condition, |C;|?+|Ca|*>+
IC312 4+ 1Cs* =1

Since the FQHE is expected to be observable only in the Landau levels with low
values i of the index, n, we consider below the sets of Landau levels of bilayer
graphene with n = 0 and n = 1 only. The wave functions of these Landau levels
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are mixtures of the conventional non-relativistic Landau functions with indices O, 1,
and 2.

There are two special Landau levels of bilayer graphene which have unique prop-
erties. For n = 0 there is a solution of (8.30) with energy ¢ = —u for the K valley
(§ = 1) and ¢ = u + 26 for the K’ valley (¢ = —1). The corresponding wave function
has the form

(8.32)

This Landau level of bilayer graphene does not have any admixture of other Landau
levels and has exactly the same properties as the O-th conventional non-relativistic
Landau level. At zero u and § this Landau level has exactly zero energy.

For small values of u and § there is another solution of (8.30) with n = 0 and
almost zero energy, &€ ~ 0. The corresponding Landau level has the following wave
functions

771¢1,m Vl¢l,m
q/(bi) _ 1 0 1 0

=5 | Vo | = T | V2eao
2 0,m 2 2 BP0,m

The properties of this Landau level depends on the strength of the magnetic field.
In a small magnetic field, ep < y1, the wave function becomes (Y1, 0,0, O)T
and the Landau level becomes identical to the n = 1 non-relativistic Landau level.
For a large magnetic field ep > yj, the Landau level wave function becomes
(0,0, ¥0.m,0)T and the bilayer Landau level has the same properties as for the n = 0
non-relativistic Landau level.

(8.33)

8.3.3 Pseudopotentials in Bilayer Graphene

Once the wave functions (8.25) of the bilayer Landau level are evaluated, the form
factor in the Haldane pseudopotentials (8.2) can be obtained from

Fu(@) =1C11PLu—1(q%/2) + (1C21* +1C31*) Lu(¢%/2) + 1Ca* Lus1 (4°/2).
(8.34)

In fact, the shape of the form factor tells us about the interaction effects within the
bilayer Landau levels. For the Landau level 01, defined by (8.32), the form factor is
Fy, = Lo(g?/2), which is exactly the same as the form factor in (8.3) of the non-
relativistic system in the n = 0 Landau level. Therefore the interaction effect in this
Landau level is the same as in the n = 0 non-relativistic Landau level.
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The bilayer Landau level 0_, defined by (8.33), exhibits an interesting behavior
of bilayer graphene with increasing magnetic fields. The form factor corresponding
to that Landau level (8.33) is given by

Fo (q) = [L}L ( 2/2)+[£}L (@%/2). (835
= i [T 22 |0 '

With increasing magnetic field, i.e., increasing ¢ g, the bilayer Landau level 0_; be-
comes identical to (i) the n = 1 non-relativistic Landau level with the form factor
L1(q2 /2) for a small magnetic field, ep < y1; (ii) the n = 1 Landau level of mono-
layer graphene with the form factor %[Lo(q2/2) + Ly (q2/2)] forep = yl/ﬁ; and,
(iii) the n = 0 non-relativistic Landau level with the form factor Lo (g2/2) for a large
magnetic field, ep > y. For typical values of yj, only the first regime will be ac-
cessible experimentally. For example, for y; = 400 meV the condition e = y; /+/2
is only achieved for a magnetic field of B = 120 Tesla.

8.3.4 Novel Effects from Electron-Electron Interactions

Once the pseudopotentials are known, the FQHE states in a graphene bilayer
can be studied using very accurate numerical techniques. Compared to monolayer
graphene, bilayer graphene has additional parameters by which we can control the
electron-electron interaction strength. As we recall, in monolayer graphene the in-
teraction strength depends only on the Landau level index. In bilayer graphene
the inter-electron interaction strength depends also on the magnetic field, the
bias voltage U, and the intra-layer asymmetry A. By varying these parameters,
the stability, i.e., the excitation gap of the FQHE states can therefore be con-
trolled [86].

Stable FQHE states in bilayer graphene are expected in the n =0 and n =1
bilayer Landau level sets. These sets are the mixtures of n =0, n =1, and n =2
non-relativistic Landau level wave functions. The mixture depends on the values of
the parameters of the system. With a non-zero bias voltage and intra-layer asymme-
try, the valley degeneracy of the Landau levels of bilayer graphene is lifted, resulting
in different properties of Landau levels for different valleys.

The stability of the FQHE state is characterized by the value of the corresponding
FQHE gap. For the primary filling fractions of the FQHE, i.e., v = %, %, % etc., the
bilayer system shows a similar behavior. Therefore, in what follows, only the results
for the v = % FQHE state are shown. The general behavior of the FQHE gap for
different parameters of the bilayer system is illustrated in Figs. 8.9, 8.10 and 8.11.
For each value of n, n =0 and n = 1, there are four Landau levels in each valley.
Within this set of bilayer Landau levels, there is one special Landau level which
has an unique property. This Landau level has the label 0§+) with the wave function
given by (8.32), which is just the n = 0 non-relativistic Landau wave function for
all parameters of bilayer graphene. Therefore, the interaction properties within this
Landau level are identical to the interaction properties of the n = O non-relativistic
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Fig. 8.9 Landau levels of bilayer graphene [panels (a) and (c)] are shown as a function of the bias
voltage, U, i.e., the difference between the on-site energies in the two layers. Panels (b) and (d): the
Coulomb gaps of %—FQHE in corresponding Landau levels. The numbers next to the lines are the
labels of the Landau levels. The same types of lines [in panels (a) and (b) and panels (c) and (d)]
correspond to the same Landau levels. Panels (a) and (b) correspond to valley K, while panels (c)
and (d) correspond to valley K’. The system is characterized by A = 150 meV, y; = 400 meV,
and a magnetlc field B = 15 Tesla. The arrows in panels (a) and (c¢) show the Landau level with
the strongest ——FQHE The arrows in panels (b) and (d) indicate the gap of ——FQHE inthen =1
Landau level of monolayer graphene

Landau level and correspondingly the n = 0 Landau level of monolayer graphene.
The gap of the FQHE at this Landau level does not depend on the parameters of the
system and is the same as that of the n = 0 monolayer graphene. This property is
shown in Figs. 8.9-8.11 as a function of bias voltage, asymmetry parameter A, and
the magnetic field, where it is shown that the FQHE gap of the Landau level OYF)
does not depend on the parameters of bilayer graphene.

From Figs. 8.9-8.11 it is quite clear that in each valley the bilayer graphene has
four Landau levels with a strong 3 L_FQHE for all values of the parameters of the

system. These levels have the following labels: 0(+) 0(+) 0(+) l§+) (valley K)

and 0(72) , 0(71), O; ) , 1(71) (valley K'). Therefore for a given valley there are three
Landau levels with n = 0 and one Landau level with n = 1, which all show a stable
FQHE. The gaps of the corresponding FQHE states are usually between the gaps of
n=0andn=1v= %—FQHE state in monolayer graphene. The value of the gap

of the _%-FQHE state in the n = 1 Landau level of monolayer graphene is shown

by red arrows in Figs. 8.9-8.11. In the Landau level O(_+2), for a large asymmetry

(see Fig. 8.10), the FQHE state becomes more stable than the corresponding state
in monolayer graphene.

The Landau level with the label O(fl) shows a strong dependence of the interaction
properties on the parameters of the system. Namely, with increasing bias voltage or
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Fig. 8.10 Landau levels of bilayer graphene [panels (a) and (c)] are shown as a function of the
intra-layer asymmetry, A. Panels (b) and (b): the Coulomb gaps of %—FQHE in corresponding
Landau levels. The numbers next to the lines are the labels of the Landau levels. The same types of
lines [in panels (a) and (b) and panels (c¢) and (d)] correspond to the same Landau levels. Panels (a)
and (b) correspond to valley K, while panels (¢) and (d) correspond to valley K’. The system is
characterized by U = 200 meV, y; =400 meV, and a magnetic field B = 15 Tesla. The arrows
in panels (a) and (c) show the Landau level with the strongest %-FQHE. The arrows in panels (b)

and (d) indicate the gap of %—FQHE in the n = 1 Landau level of monolayer graphene

intra-layer asymmetry, the gap of the FQHE state and correspondingly its stability
strongly increases. At a fixed filling factor of bilayer graphene, this type of behavior
can result in the unique experimental observation of a transition from a non-FQHE
state at small values of the bias voltage (for example) to a FQHE state at large bias
voltages.

The solid black lines in Figs. 8.9-8.11 correspond to the Landau levels without a
stable FQHE state. It should be noted that there is also no clear boundary between
the Landau levels with and without the FQHE, i.e., between two Landau levels with
the FQHE there is a Landau level without FQHE (see Fig. 8.9). This property can
be observed experimentally if the FQHE is studied as a function of the filling fac-
tor of bilayer graphene while the other parameters of the system are fixed. That
means, if one varies the filling factor of bilayer graphene and studies the %—state at
each Landau level then one should be able to observe transitions from the FQHE to
no-FQHE state and back to the FQHE state. We should emphasize that this unique
phenomenon has never been observed before in conventional two-dimensional sys-
tems.

The results illustrated in Fig. 8.9-8.11 are typical for the large inter-layer hopping
integral, y; & 400 meV. At smaller values of y1, bilayer graphene shows additional
features due to anticrossing of the Landau levels as a function of the parameters
of the system, i.e., the bias voltage. Such an anticrossing results in a transition of
the type, FQHE—no FQHE—FQHE within the same Landau level [86]. This be-
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Fig. 8.11 Landau levels of bilayer graphene [panels (a) and (c¢)] are shown as a function of the
magnetic field. Panels (b) and (b): the Coulomb gaps of the %-FQHE in corresponding Landau
levels. The numbers next to the lines are the labels of the Landau levels. The same types of lines [in
panels (a) and (b) and panels (c) and (d)] correspond to the same Landau levels. Panels (a) and (b)
correspond to the valley K, while panels (¢) and (d) correspond to the valley K’. The system is
characterized by A = 150 meV, U =200 meV, and y; = 400 meV. The arrows in panels (a) and (c)
show the Landau level with the strongest %—FQHE. The arrows in panels (b) and (d) indicate the

gap of the %-FQHE state in the n = 1 Landau level of monolayer graphene

havior is illustrated in Fig. 8.12 for three different values of the inter-layer hopping
integral. The actual values of the inter-layer hopping integral depend on the experi-
mental realization of bilayer graphene and is about 400 meV. The anticrossing and
the coupling of different Landau levels is more pronounced at small values of y;.
The anticrossing should be experimentally observable if the filling factor of bilayer
graphene is kept fixed and the bias voltage is varied.

For a small inter-layer tunnelling integral and a small bias voltage, some Landau
levels in bilayer graphene show strong non-monotonic behavior of the FQHE gap
with well-pronounced maxima. This property is illustrated in Fig. 8.13, where the
FQHE gap is shown as a function of the inter-layer coupling, y;, for two values
of the bias voltage, U. The inter-layer coupling can be varied experimentally, for
example, by applying a tilted magnetic field, where the parallel component of the
magnetic field influences the inter-layer coupling [81]. For small bias voltage, the
Landau level Og_) has the wave function of the form of (8.33). With variation of the
intra-layer tunnelling integral, the wave function (8.33) transforms from the n = 0
non-relativistic Landau wave function for small y; to the n = 1 monolayer graphene
Landau function for y; = 2% hy F/€o and finally to the n = 1 non-relativistic Lan-
dau level function for large y;. Therefore the FQHE gap of bilayer graphene in the
ng) Landau level is equal to the FQHE gap of the n = 0 non-relativistic Landau
level for small y; and to the FQHE gap of the n = 1 monolayer graphene Landau

level for y; = 27 r/€o. This property is illustrated in Fig. 8.13(a), where a strong
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Fig. 8.12 A few lowest Landau levels of the conduction band as a function of the bias poten-
tial, U, for different values of inter-layer coupling: (a) y; = 30 meV (b) y; = 150 meV and
(¢) 1 =300 meV and a magnetic field of 15 Tesla. The intra-layer asymmetry A is zero. The
numbers next to the curves denote the corresponding Landau levels. Left and right columns corre-
spond to the K and K’ valleys, respectively. The Landau levels where the FQHE can be observed
are drawn as blue and green filled dots. The green dots correspond to the Landau levels where the
FQHE states are identical to that of a monolayer of graphene or a non-relativistic conventional sys-
tem. The red dots represent Landau levels with weak FQHE. The open dots correspond to Landau
levels where the FQHE is absent. In (a), the dashed lines labeled by (i) illustrates the transition
between FQHE (symbol ‘F’) and no FQHE (symbol ‘NF’) states under a constant gate voltage and
variable bias potential [86]

non-monotonic behavior of the FQHE gap of the 0(1_) Landau level is shown. The

maximum of the FQHE gap at y; = Z%Iivp /£o corresponds to the FQHE gap at
n = 1 monolayer graphene Landau level.

The above analysis clearly indicates that the interaction properties of biased bi-
layer graphene depend both on the magnetic field and on the parameters of the
system, such as the bias voltage, intra-layer asymmetry, and the inter-layer hopping
integral. In each valley there are a few Landau levels which display a strong FQHE,
the gap of which depends on the parameters of the bilayer. This dependence can
be observed experimentally as transitions between the FQHE and no-FQHE states
within the same Landau level when the parameters of the system, e.g., the bias volt-
age, are changed. Although the FQHE gaps can be controlled by the parameters of
the bilayer system, the gaps usually do not exceed the corresponding FQHE gaps in
monolayer graphene.
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Fig. 8.13 The FQHE gaps shown for different Landau levels. The labels next to the lines denote
the corresponding Landau levels. (a) U = 10 meV, and (b) U = 300 meV. All systems are fully
spin polarized and the magnetic field is 15 Tesla. The intra-layer asymmetry A is zero [86]

8.3.5 Interacting Electrons in Rotated Bilayer Graphene

Epitaxial graphene [87], which is thermally grown on the C face of the SiC substrate,
as well as graphene grown by chemical vapor deposition (CVD) [88], are multilayer
films and yet, quite surprisingly display behavior similar to that of a single layer
graphene [89]. These systems are known to have a high degree of rotational mis-
alignments [90]. Theoretical studies of turbostratic bilayer graphene [91-94] have
indicated that in this case the interlayer coupling is suppressed and the systems
can be roughly considered as two decoupled layers of graphene, as confirmed by
scanning tunneling spectroscopy together with Landau level spectroscopy measure-
ments [95]. At the same time due to the modulated nature [93] of the interlayer
transfer integral, these systems show quite rich low-energy physics, which strongly
depends on the nature of the commensurate stacking faults [94]. In this section,
we will deal with the question: how does the electron-electron interaction manifest
itself in a rotated bilayer graphene?

In a misoriented bilayer graphene, one graphene layer is rotated relative to the
other layer by an angle 6. We assume that the axis of rotation passes through the
atoms of A-sublattices in the two layers (Fig. 8.14). In general, the axis can pass
through any point of the bilayer. There is a special type of rotation, called com-
mensurate rotation, which is determined by the condition that the atoms of the two
layers are coincident not only at the axis of rotation but also at some other points.
The angles corresponding to the commensurate stacking fault are determined from:
cos® = (3¢% — p*)/(3¢> + p?), where ¢ > p > 0 are integers [93].

There are two types of commensurate rotations that are distinguished by their
symmetry, even or odd, with respect to the sublattice exchange [94]. For the even
commensurate stacking fault both A and B sublattice sites of the two layers are
coincident at some point, while for the odd stacking fault only A sublattice sites of
the two layers are coincident both at the axis of rotation and at some other points.
The regular stacking orientations, AA or Bernal, are realized at the following angles:
AA-stacking—at angle 6 = 0, which corresponds to the even stacking orientation,
and Bernal stacking—at angle 6 = 60°, which is the odd orientation.
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The even and odd stacking faults can also be described in terms of the properties
of the reciprocal lattices of the two layers [94]. The reciprocal lattice of a graphene
layer consist of K and K’ sets of points: K+ Gy, «, K'+ Gy, , where G, = mG1 +
kG2, m and k are integers, G| =27 /a(l, \%) and G2 =27 /a(0, %) are primitive
reciprocal lattice vectors, and K = 27 /a(%, %@), K =27 /a(%, 0). These two sets
of points correspond to the two valleys of graphene. Then in terms of the reciprocal
lattices, a rotation by an angle 6 in real space corresponds to a rotation by an angle
6 in reciprocal space about the origin, i.e, (0,0). For an even commensurate stacking
fault, the K points of the reciprocal lattices of the two layers are then coincident
[94],1.e., K4 G, r = K(0) + G, 1 (0), while for the odd stacking fault the K and
K’ points are coincident, i.e., K+ Gy, x = K'(0) + G,y 1 (0) [94]. Here k, m, k',
and m’ are integer numbers.

Due to the periodic modulation of rotated bilayer graphene at the commensurate
angles, the effective interlayer coupling, y.rf, is determined by the Fourier trans-
form of the interlayer potential function at the wave vector K + Gy, . Then the
effective low-energy Hamiltonians of the rotated bilayer at the commensurate con-
dition are given by [94]

0 VRTT_ )/ge""b/2 0
. VFTT4 0 0 yge_i¢/2
Heven = y9+€,-¢/2 0 0 - , (8.36)
0 y9+ei¢/2 VR4 0
0 VFTT_ 0 0
| vEmy 0 Yo 0
Hodd = 0 v 0 v (8.37)
0 0 VFTT4 0

The Hamiltonians (8.36) and (8.37) are generalization of the Hamiltonians (8.20)
and (8.21) of regular bilayer graphene. Here yp = y, ffeig and the phase angle ¢ is
determined by the interlayer potential.

For the odd rotated bilayer and for all rotation angles, the Hamiltonian (8.37)
is completely identical to the Hamiltonian (8.21) of bilayer graphene with Bernal
stacking. The only difference is the magnitude of the interlayer coupling. While
for Bernal stacking the interlayer coupling y; is around 400 meV, the coupling



8 Aspects of the Fractional Quantum Hall Effect in Graphene 279

in the rotated bilayer is an order of magnitude smaller, yp ~ 10 meV. Therefore,
for the effects of the electron-electron interaction and the properties of FQHE,
the odd-rotated bilayer behaves similar to bilayer graphene with Bernal stack-
ing and the results of the previous section are applicable to the odd-rotated bi-
layer.

For the even rotated bilayer the Hamiltonian is similar to the Hamiltonian of bi-
layer graphene with AA stacking and the interaction properties of the even rotated
bilayer become completely identical to the bilayer graphene with AA stacking. The
additional phases in the Hamiltonian (8.36) affect the phases of the wave function
components, which can be visible in magneto-optics experiments [96], but the pseu-
dopotentials do not depend on these phases and correspondingly on the interlayer
coupling. The pseudopotentials for the even rotated bilayer are identical to those of
individual graphene layers. Therefore, as far as the FQHE is concerned, the even
rotated bilayer can be considered as two decoupled graphene layers for any twist
angle.

8.4 Fractional Quantum Hall Effect in Trilayer Graphene

A trilayer graphene consisting of three coupled graphene layers, has a very unique
electronic energy spectrum. Within the nearest-neighbor inter-layer coupling ap-
proximation, the energy spectrum of trilayer graphene with Bernal stacking con-
sists effectively of decoupled single-layer graphene and the bilayer graphene energy
spectra. Therefore the trilayer graphene system allows us to study experimentally
both the massless and massive energy spectra within a single system. In a strong
perpendicular magnetic field the Landau energy spectrum of trilayer graphene be-
comes the combination of Landau levels of single-layer and bilayer graphene. This
combination exhibits many crossings of the Landau levels as a function of the mag-
netic field. At the crossing points the Landau levels are highly degenerate. The de-
generacy is lifted when the higher-order inter-layer coupling terms are taken into
account, resulting in rich properties of quantum Hall effect in trilayer graphene
[97, 98].

Novel features of the FQHE should be also expected in trilayer graphene [99].
In what follows, we explore the properties of FQHE in trilayer graphene within
the nearest-neighbor inter-layer coupling approximation. The trilayer graphene can
be in two main stacking arrangements: the ABA (Bernal) stacking and the ABC
stacking, which are schematically shown in Fig. 8.15.

Within the nearest neighbour inter-layer coupling approximation, the Hamilto-
nian of trilayer graphene is characterized by two parameters alone: the intra-layer,
0, and inter-layer, yi, tunnelling integrals. In a perpendicular magnetic field the
Hamiltonian of trilayer graphene for a single valley, e.g. valley K, takes the form
[97, 100]
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Fig. 8.15 Schematic illustration of two different stacking arrangements of trilayer graphene, con-
sisting of three coupled monolayers of graphene: (a) ABC stacking; (b) ABA stacking. Each
graphene layer consists of two inequivalent sites A and B. The intra-layer and inter-layer hopping
integrals are shown by yp and yy, respectively

0 VFTT_ 0 0 0 0
VFTT4 0 Y1 0 0 0
0 0 VFTT_ 0
(ABA) _ Y1 F Y1
H - 0 0 VETT4 0 0 0 ’ (8.38)
0 0 0 0 0 VFTT_
0 0 Y1 0 VFTT4 0
for the ABA stacking and
0 VETT_ 0 0 0 0
VFTT4 0 Y1 0 0 0
0 0 VFTT_ 0 0
(ABC) _ V1 F
H - 0 0 VT 0 Y1 0 ’ (8.39)
0 0 0 Y1 0 VFTT_
0 0 0 0 VFTT4 0

for the ABC stacking. The Landau levels of trilayer graphene can be obtained from
the Hamiltonian matrix (8.38) (or (8.39)). The corresponding wave functions are
parametrized by the integer n and can be expressed through the non-relativistic Lan-
dau level wave functions as

Cld)n—l,m
C2¢n,m
AaBa) _ | C3bum
v | Cadutim |’ (840)
C5¢n—l,m
C6¢n,m
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for the ABA stacking and

Cl(bnfl,m
C2¢n,m
@Bc) _ | C3bnm
v " Catpsim |7 (8.41)
C5¢n+l,m
CoPnt2,m

for the ABC stacking. Therefore the Landau wave functions of trilayer graphene are
the combinations of n, n — 1, and n + 1 non-relativistic Landau functions for the
ABA stacking, and n, n — 1, n 4 1, and n 4 2 non-relativistic Landau functions for
the ABC stacking. With the known wave functions, the corresponding form factors
of the Haldane pseudopotential can be evaluated from the following expressions

FABA (@) = (IC117 + IC5 %) Lu—1(q%/2)
+ (12 + 1G53 + 1C61*) L (¢ /2) + |Cal* Lut1(g?/2),  (8.42)
for the ABA stacking and

FABC(g) = 1C11PLu=1(42/2) + (1C21> + 1C3 1) Lu (42 /2)
+ (IC4* +1C51*) Lus1(g/2) + 1Col* Lus2(q7/2),  (8.43)

for the ABC stacking.
The Landau energy spectrum found from the Hamiltonian matrices (8.38) and
(8.39) have the following properties:

ABA Stacking The ABA stacking has the unique property that it is completely
identical to the combination of the single graphene layer and the bilayer graphene
systems. This property follows directly from the Hamiltonian (8.38). Therefore
the Landau levels of trilayer graphene consist of the Landau levels of single layer
graphene and the Landau levels of bilayer graphene. Within the nearest neighbour
inter-layer coupling approximation, considered in the Hamiltonian (8.38) these Lan-
dau levels are decoupled. Hence the FQHE in this system should be identical to the
FQHE in a single layer graphene and in bilayer graphene.

ABC Stacking For each n > 0 there are six Landau energy levels with energies
[100]

5
el = i\/2ﬂ005<g) — ?l (8.44)
4 5
aff):i\/zﬁcos(”z ”)—gl (8.45)

2 1)
1»323)=:|:\/2«/ﬁcos<n+3 n)—gl (8.46)
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where
53
—aL 4 ny2 v
cosn = % (8.47)
T —%?
and
81 =2y —3(1 +n)ex (8.48)
&=y +20 +n)yfeq + (2 +6n+3n?)ey, (8.49)
83=—n(n+ 1)(n +2)e8. (8.50)
At n = —1, there are three Landau levels. One Landau level has zero energy,

& = 0, with the wave function ¥48S) « (0, 0,0, —£BP0.m, 0, Y1¢1,m). The other
two levels have the energies & = =£,/e% + y? with the wave functions ¥ 4BC)
(0,0,0, ¥190,m: €P0,m» EBP1,m)-

At n = —2 there is only one Landau level with energy ¢ = 0 and the wave func-
tion W (ABC) (0,0,0,0,0, ¢o,). This Landau level is completely identical to the
n = 0 non-relativistic Landau level. Therefore, the FQHE at this Landau level should
have exactly the same strength as for the n = 0 non-relativistic Landau level.

With the known wave functions of the Landau levels of trilayer graphene, we
evaluate the form factors and the corresponding pseudopotentials. With these pseu-
dopotentials we then analyse the properties of the FQHE in trilayer graphene. In
Fig. 8.16, the lowest Landau levels of trilayer graphene are shown, where the red
and blue lines correspond to the Landau levels with a strong FQHE. The strength of
the FQHE is characterized by the excitation gap, which are shown in Fig. 8.16 for
the filling factor v = %

For the ABA stacking, the trilayer graphene can be considered as the decoupled
system of single layer and bilayer graphene. The blue and red lines correspond to the
Landau levels with a strong FQHE of single layer graphene and bilayer graphene,
respectively. The strongest FQHE with a gap of 0.09¢¢ is observed in the n = 1
single graphene layer [see Fig. 8.16(a)]. At the zero energy, the Landau levels of
bilayer graphene and the single-layer graphene are degenerate, having the FQHE of
the same strength.

For the ABC stacking (see Fig. 8.16), the trilayer graphene cannot be divided into
more simple systems. Similar to the ABA stacking there is one Landau level with
the strongest FQHE (the gap is 0.09¢¢), the gap of which is close to the FQHE gap
of the n = 1 single layer graphene. The Landau level with zero energy is identical
to the n = 0 Landau level of the single-layer graphene and the n = 0 non-relativistic
Landau level. With a few Landau levels showing the strong FQHE, the strength of
the FQHE for the ABC stacking does not exceed the strength of the FQHE in a
single-layer graphene.
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Fig. 8.16 The lowest Landau energy spectra of trilayer graphene shown as the function of the
magnetic field for (a) ABA and (b) ABC stacking. The red and blue lines correspond to the Landau
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(in units of ec = ez/do) at the corresponding Landau level. In panel (a) the blue and red lines
corresponds to the Landau levels of the single layer and bilayer graphene, respectively

8.5 Some Unique Properties of Interacting Dirac Fermions

In this section, we discuss some of the exotic properties of interacting Dirac
fermions. These include the pfaffians in graphene and the FQHE in a topological
insulator.

8.5.1 The Pfaffians in Condensed Matter

The vast majority of fractional quantum Hall states observed in the experiments oc-
cur at rational filling fractions v = p/q, with g being an odd integer [3, 71]. Further,
there have never been any experimental indications that the FQHE would occur at
V= % One also expects that the states in the (n 4 1)-th lowest Landau level (LLL)

should be similar to that at the LLL for v = %, because the lower n Landau levels
are then completely filled. The discovery of FQHE in a traditional 2DEG at v = % in
1987 [101, 102] was therefore a total surprise, for which a proper explanation of the
nature of the state has remained elusive ever since [103]. The state was found to be
quite robust with a sizeable excitation gap (A ~ 0.6 K) and a well-defined plateau.
The Laughlin wave function (8.1) is not suitable for this state because at v = %,
the appropriate state represents a system of bosons. In order to explain the origin
of the corresponding incompressible state, it has been proposed that the ground
state of v = % is described by a Pfaffian [104-107] (or anti-Pfaffian [108, 109])
function. Within this description, the elementary charged excitations have a charge
¢* = e/4 and obey ‘non-abelian’ statistics [110, 111]. These unique charged excita-

tions have been recently observed experimentally [112, 113]. Interesting properties
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of these quasiparticles, which carry the signatures of Majorana fermions [114-116],
have initiated a lot of theoretical interest in the Pfaffian description of the even-
denominator FQHE.

The filling factor v = % =2+ % corresponds to a completely occupied n = 0
Landau level with two components of spin and half-filling of the n = 1 Landau
level. Therefore the Pfaffian state, which is proposed as the incompressible state of
V= %, is the ground state of the half-filled » = 1 Landau level. It is obtained by

operating the Pfaffian factor on the Laughlin state (8.1) at v = %:

1 2
Wpy = Pf( ) [Tei- z;)zeXp<— > 427) (8.51)
0

T i

where the positions of the electrons are, as usual, described in terms of complex
variable z = x — iy and the Pfaffian factor is defined for any N x N anisymmetric
matrix M;; as [104-107]

N/2
1
PfMij = WN/Z)' U; sgno ll_[ Mg 1-1)01)- (8.52)
N =

Here Sy is the group of permutations of N objects. The Pfaffian factor therefore
provides the necessary antisymmetry to the Laughlin state at v = %

The Pfaffian state is realized at half occupation of the Landau level, i.e., at a fill-
ing factor v = % in a given Landau level, and only for special interaction potentials.
The Pfaffian is the exact ground state with zero energy of the electron system at
half filling for a special three-particle interaction which is non-zero only if all three
particles are in close proximity to each other [106, 107]. In spherical geometry with
flux quanta 25, it means that the three-particle interaction potential is non-zero only
if the total angular momentum of the three particles is 35 — 3, which is described

by the following interaction Hamiltonian

2
Hins = :—EO > PGS —3), (8.53)
i<j<k

where P;jx (L) is the three-particle projection operator onto the state with total an-
gular momentum L. For realistic two-particle interactions the v = % Pfaffian state
is not an exact eigenstate. By varying the two-particle interaction function, i.e., the
Haldane pseudopotentials, a close proximity of the ground state to the Pfaffian state
with an overlap of 99 % can be achieved.

It was shown in Ref. [117] that for traditional non-relativistic systems the Pfaffian
(Moore-Read) states can be adiabatically connected to the v = % Coulomb ground
state in the n = 1 Landau level by varying the interaction potential from a three-
body interaction (8.53) to the Coulomb two-body interaction. However, there is no
such connection for the v = % Coulomb ground state in the n = 0 Landau level. The
adiabatic connection means that by varying the interaction potential, the system is
always kept in the incompressible state with a finite collective excitation gap. This
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result illustrates that for the Coulomb interactions, the v = % state in the n = 1 non-
relativistic Landau level is in the same topological phase as the Pfaffian state, but the
system in the n = 0 Landau level does not show any connection to the Pfaffian phase.
For the pure Coulomb interaction the overlap of the ground state of the v = % system
in the n = 1 Landau level with the Pfaffian function is about 80 %. This overlap can
be increased by varying the electron-electron potential strength, for example, by
increasing the thickness of the two-dimensional layer [118].

The Pfaffian states are usually studied numerically in the spherical geometry
[106, 107, 119]. For a system of N electrons the size of the sphere for which the
Pfaffian ground state is realized, is determined by the condition 2S5 = 2N — 3, which
corresponds to the filling factor v = % in the thermodynamic limit. For such a sys-
tem and for the interaction potential of the form of (8.53), the Pfaffian state is an
exact ground state with zero energy and finite excitation gap. For the two-particle
interaction the interaction potential is characterized by Haldane pseudopotentials
(8.2). The proximity of the actual v = % ground state to the Pfaffian state is most
sensitive to the lowest pseudopotentials, Vi, V3, and Vs.

8.5.2 The Pfaffians in Graphene

The interaction potentials in monolayer and bilayer graphene are different from
those of the non-relativistic 2D systems. This can modify the properties of the v = %
state and its proximity to the Pfaffian state in graphene. The numerical analysis in a
spherical geometry of a finite-size monolayer graphene system with up to 14 elec-

trons shows that an incompressible v = 1 Pfaffian state is unlikely to be found in

monolayer graphene [120]. The overlap of the ground state of the v = % system
with the Pfaffian function is less than 0.5 for all Landau levels of the monolayer
graphene. The corresponding collective excitation gap is also small.

Interestingly, a very different situation occurs in bilayer graphene. The stability
of the v = % Pfaffian state in bilayer graphene can be greatly enhanced as compared
to the non-relativistic system. Here the stability of the incompressible state is deter-
mined by the value of the collective excitation gap, which is correlated to the overlap
of the ground state and the Pfaffian state. In bilayer graphene there is one ‘special’

Landau level (for each valley), which is described by (8.33) and has the label O(_+1)

in valley K (or 0(1_) in valley K’). Numerical studies [120] in a spherical geometry
show that only in this special Landau level the overlap of the ground state with the
Pfaffian state and the excitation gap is large. In all other bilayer Landau levels the
overlap of the v = % ground state with the Pfaffian state is found to be small (< 0.6)
and those states cannot be described by the Pfaffian.

At the zero bias voltage this special Landau level has zero energy and is degen-
erate with the level given by (8.32). In addition to this accidental degeneracy, each
level has a two-fold valley degeneracy, which makes the zero-energy state four-fold
degenerate. At a finite bias voltage this degeneracy is completely lifted and the spe-
cial Landau level of bilayer graphene can be isolated. In Fig. 8.17, several bilayer
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Fig. 8.17 Few LLLs of a K
400

2(1+)

bilayer graphene, shown for
U =50meV, A =0, and * ()
t =400 meV. The two solid 1, 2,
red lines belonging to
different valleys show the
‘special’ Landau levels where
the v = % Pfaffian state can
be observed. The two solid
green lines show the Landau
levels, which at small
magnetic. ﬁel(.i, B—0, 1(_"1) 2(_+1) 2(;)
become identical to the n = 1

Landau level of the -400 e ~—

non-relativistic 2D system 5 10 15 20 25 30 35 40
Magnetic field (Tesla)

Energy (meV)

Landau levels are shown at a small bias voltage (U = 50 meV) and zero intra-valley
asymmetry (A = 0). The special Landau levels, O(_+l) and 05_), corresponding to two
different valleys, are shown by red lines. The interaction potentials and the many-
particle properties of these two levels are identical.

From the expression (8.35) for the form factor, F;,, of the Landau level 0(_+1)

(or
ng)) we can obtain the following general property: At a small magnetic field, y; <
€g, the form factor is identical to the form factor of the non-relativistic # = 1 Landau
level. Therefore in this limit we should expect that the v = % state is described by the
Pfaffian and it is in the same topological phase as the Pfaffian state. By increasing
the magnetic field we can change the relation between y; and € g, which changes the
interaction properties of the system and the properties of the v = % state. Finally, at
a very large magnetic field, y; < €p, the form factor becomes identical to that of
the n = 0 non-relativistic system, for which there are no v = % Pfaffian states. At
an intermediate magnetic field there are two possibilities: (i) the excitation gap of
the v = % state and the overlap with the Pfaffian state decrease monotonically with
the magnetic field and finally disappear or (ii) the system shows a non-monotonic
dependence with the maximum stability, i.e., the maximum gap, at the intermediate
magnetic field. Our numerical results show that for bilayer graphene the second
situation is indeed realized (see Fig. 8.18 and the discussion below).

In Fig. 8.18, the parameters of the v = % state are illustrated at the intermediate
magnetic field. Here the overlap of the ground state with the Pfaffian state and the
corresponding excitation gap are shown. These results clearly indicate that with in-
creasing magnetic field the properties of the system change non-monotonically and
for y; =400 meV the overlap with the Pfaffian state reaches its maximum at a mag-
netic field of ~ 10 Tesla. The corresponding excitation gap also reaches its maxi-
mum at this point. In dimensionless units the maximum is achieved at y; /ep = 4.89.
Therefore, for smaller values of y; the maximum is achieved at smaller magnetic
fields, which is shown in Fig. 8.18 for y; = 300 meV. The overlap with the Pfaf-
fian state at the maximum point is & 0.92, which is a major improvement over the
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non-relativistic system (~ 0.75, which is the value at zero magnetic field limit in
Fig. 8.18).

Within this picture the magnetic field should be considered as the parame-
ter which adiabatically changes the interaction Hamiltonian from the n = 1 non-
relativistic system to the bilayer system at the special Landau level, 0(_+1). These
changes are adiabatic since the gap remains non-zero and large. Therefore, we con-
clude that the v = % state at the special bilayer Landau level is in the same topo-
logical phase as the v = % state in the n = 1 non-relativistic Landau level and cor-
respondingly as the Pfaffian state. At the same time the overlap with the Pfaffian
state and the excitation gap is larger in bilayer graphene (at B ~ 10 Tesla) than in
the non-relativistic system. Therefore, bilayer graphene provides the more stable
Pfaffian state.

At a large magnetic field the bilayer system, at the special Landau level, O(_+),
becomes close to the n = 0 non-relativistic Landau level, the overlap with the Pfaf-
fian state becomes small, the excitation gap becomes small, and the v = % state
finally becomes compressible. This dependence on the magnetic field opens up
interesting possibilities to investigate the stability and appearance and disappear-
ance of the v = % Pfaffian state in a single Landau level of bilayer graphene. Al-
though the Pfaffian state becomes unstable only at large magnetic fields, this prop-
erty strongly depends on the value of the hopping integral. At smaller hopping inte-
grals the magnetic field range of stability of the Pfaffian state shrinks. For example,
at t = 300 meV the Pfaffian state is expected to be unstable at B ~ 40 Tesla (note
the suppression of the FQHE gap with increasing magnetic field in Fig. 8.18). The
dependence of the properties of the v = % state on the bias voltage is weak within
the broad range of U [120].

In bilayer graphene there is another set of Landau levels, which are shown by
green lines in Fig. 8.17 and are labelled as 2§+) for valley K and 2(_71) for valley K'.
These Landau levels have the following property. At a finite bias voltage and a
small magnetic field, the corresponding Landau level wave functions are described
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by the n = 1 non-relativistic Landau wave functions, (0, ¢1 m, 0, 0). Therefore in
this limit the interaction potentials become identical to the interaction potentials
of the non-relativistic system in the n = 1 Landau level. Then the v = % Pfaffian

state should be realized in the bilayer Landau level 2(1+) (2(_?) for small values
of the magnetic field. With increasing magnetic field the interaction potentials are

modified which should influence the properties of the v = % state. In Fig. 8.19,

we present the magnetic field dependence of the parameters of the v = % state in

the Landau level 2§+) (2(:1)). Evidently, in this case with an increasing magnetic
field the overlap with the Pfaffian state and the excitation gap are strongly sup-
pressed. Therefore in this bilayer Landau level the v = % Pfaffian state cannot be
realized.

The stability of the v = % ground state and its proximity to the Pfaffian state
can also be analyzed in terms of the general dependence of the Haldane pseu-
dopotentials, V,,, on the relative angular momentum, m. The v = % Pfaffian state
is most sensitive to the following parameters of the pseudopotential: V;/ Vs and
V3/ Vs [117]. These parameters depend on the strength of the magnetic field. By
varying the magnetic field, we introduce an adiabatic transition of the pseudopo-
tentials from one set to another. Such a transition can be shown as a line in the
(V1/Vs)—(V3/ Vs) plane (see Fig. 8.20). That line connects the initial point at B =0
to the final point, corresponding to a large magnetic field, B = oco. In Fig. 8.20, three
regions which were identified in Ref. [117] are shown: (i) region of large overlap of
the v = % ground state with the Pfaffian function and the largest excitation gap and
correspondingly the most stable v = % Pfaffian state. (ii) That region is surrounded
by the region of less stable Pfaffian state. (iii) The region of compressible states, i.e.,
with zero excitation gap.

The red line in Fig. 8.20 (a) corresponds to the special bilayer Landau level O(jl)
(05_)) (Fig. 8.17). In this Landau level the v = % bilayer graphene system at the
initial and final points are identical to the non-relativistic 2D systems in the first
(n =1) and zero (n = 0) Landau levels, respectively. For the intermediate magnetic
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Fig. 8.20 (a) The trajectory of the inter-electron interaction pseudopotential with varying mag-
netic field, shown by a solid red line in the plane (V;/Vs)—(V3/Vs) for the ‘special’ bilayer Lan-

dau levels 0(1_) and O(_+l). The corresponding Landau levels are marked by a red line in Fig. 8.17.
The green lines depict the trajectory of the interaction potential corresponding to the Landau levels

2(:1) and 2(1+), marked by green lines in Fig. 8.17. The initial point of the trajectory (at B = 0) cor-
responds to the non-relativistic system in the n = 1 Landau level, while the final point (at B = 00)
corresponds to the non-relativistic system in the n = 0 Landau level. The shaded region illustrates
the compressible v = 1 state, while the blank region corresponds to the incompressible v = %
state (Ref. [117]). The crossing of the boundary between the compressible and incompressible
states occurs at B ~ 100 Tesla for the hopping integral y; = 400 meV. The blue dashed line shows
the region of large overlap with the Pfaffian state (Ref. [117]). (b) Ratios of the pseudopotentials at
two values of the angular momentum are shown as a function of the magnetic field for two ‘special’

Landau levels Oif) and O(jl) . The dashed region corresponds to a large overlap of the ground state
with the Pfaffian function and also a large excitation gap

field the line goes through the region of most stable Pfaffian state. Therefore with an
increasing magnetic field, the v = % bilayer graphene system in the special Landau
level transforms from a v = % non-relativistic state (at small values of B) to a more
stable incompressible state with a large overlap and a large gap, and finally to a com-
pressible state (at a large magnetic field). This behavior is consistent with the result
shown in Fig. 8.18, where the large excitation gap is realized at a finite magnetic
field. For the hopping integral + = 400 meV, the transition from the incompressible
to a compressible v = % state occurs at B ~ 100 Tesla. In Fig. 8.20(b) the depen-
dences of both parameters (V/Vs) and (V3/Vs) on the magnetic field are shown
for the bilayer Landau level O(+) These dependences correspond to the red line in
Fig. 8.20(a). The dashed region shows the region of the stable v = % ground state
with a large excitation gap and a large overlap with the Pfaffian state. This region is
realized at a finite magnetic field, B ~ 10 Tesla, which is consistent with the results
of Fig. 8.18.

The green lines in Fig. 8.20 correspond to the Landau level ZEH (2<:1))
(Fig. 8.17). The results clearly show that with increasing magnetic field and for
all values of U and A, the v = % system becomes less stable by having a smaller
excitation gap, which support the results shown in Fig. 8.19.
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Therefore, the incompressible v = % Pfaffian state can actually be found in a
bilayer graphene in one of the Landau levels. The properties of this state strongly
depend on the magnetic field strength. With increasing magnetic field the graphene
system at this special Landau level shows a transition from the incompressible to
a compressible state with increasing magnetic field. At a finite magnetic field the
Pfaffian state in bilayer graphene becomes more stable with the larger excitation
gap than its counterpart in non-relativistic 2D electron systems.

8.5.3 Interacting Dirac Fermions on the Surface of a Topological
Insulator

The relativistic dispersion relation, observed in monolayer graphene, is also realized
in special insulators with topologically protected surface states [121, 122]. Those
states in topological insulators are gapless with a linear (relativistic) dispersion re-
lation similar to the energy spectra of graphene. Therefore the properties of the
surface states of topological insulators are expected to be similar to the properties of
graphene. Experimentally the topological insulator has been realized in Bij_,Sb,
and BiySes; materials, containing a single Dirac cone on the surface [123, 124].

In an external magnetic field the properties of surface Landau levels of a topolog-
ical insulator are similar to those of Landau levels in graphene [125, 126]. Although
the low-energy dynamics of the surface states is similar to graphene, there is how-
ever, an important difference between these two systems. While the electronic states
of graphene are strictly two-dimensional and are localized within a single graphene
plane, the surface states in a topological insulator have a finite width in the growth
direction. The finite width of the surface states in topological insulators modifies
the electron-electron interaction potential which in turn, modifies the properties of
the FQHE states. In traditional (non-relativistic) electron systems, an increase in the
width of the 2D layer causes a reduction of the FQHE gaps and hence a reduction
of the stability of the corresponding incompressible states. Therefore, we should ex-
pect that the FQHE gaps in a topological insulator would be smaller than those in
graphene.

To analyze the properties of the FQHE in the surface states of a topological
insulator (TI), we start with the low-energy effective Hamiltonian introduced in
Ref. [127, 128]. The Hamiltonian has the matrix form of size 4 x 4 and is given
by

e(p+M@p) (Ai/h)p; 0 (A2/h)p—
My = (A1/R)p; €(P)—Mp) (A2/h)p- 0 (8.54)
0 (A2/M)p+  e@+Mp) —(A/Mp; |7
(A2/h)p+ 0 —(A1/h)p,; €(p)— M(p)

where €(p) = C1 + (D1/h*) p? + (D2/h*)(p} + p3), M(p) = Mo — (B1/h)p? —
(Bz/hz)(pg + pg). Here for the Bi;Ses; topological insulator the material con-
stants are A; = 2.2 eV;\, Ay = 4.1 eVA, B; =10 eVAz, B, = 56.6 eV/O\Z,
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C; = —0.0068 eV, D; = 1.3 eVAZ, D, =19.6 eVAZ, and My = 0.28 eV. The
topological insulator film has a finite thickness of L., where the axis z is a trigonal
axis of BipSe3 with three-fold rotational symmetry. We assume that the two surfaces
of the film are at z = 0 and z = L. The four-component wave functions correspond-
ing to the Hamiltonian (8.54) determine the amplitudes of the wave functions at the
positions of Bi and Se atoms: (Biy, Seq, Bi, Se|), where the arrows indicate the
electron spin directions.

The external magnetic field is introduced along the z-direction which results
in Landau quantization of the electron motion in the x—y plane. The correspond-
ing Landau levels, which include both the surface and bulk Landau levels, can be
found from the Hamiltonian matrix by replacing the x and y components of the mo-
mentum by the generalized momentum [129] and introducing the Zeeman energy,
A, = % gsipB. Here g; & 8 is the effective g-factor of surface states [128, 130] and
wp is the Bohr magneton. The Landau levels are characterized by an integer index
n with the corresponding wave functions

Xi%) (Z)¢\n|—1,m

(2)

WD — Xn (?E)Z)d)\nl—l,m ’ (8.55)
an4 (2 Dul,m
X8 (@)l m

forn > 0 and

0
gD =1 0 , (8.56)
n L Xn (Z)(/J)\n\,m

. (4
le’(l )(Z)¢\n\,m
for n = 0. The functions X,?) (z) satisfy the following eigenvalue equations
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dpi’ @) _ V20D
dz E()
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A2 (2) (8.58)

—iA; 2x? (8.59)

—iA

Ay iV, (8.60)

2 2
where €; , = C1 + Dzz’Z—J{l — Dlj—zz and M, , = My — BQZ’Z—J{I — B 57. The so-
0

0
Iution of the system of equations (8.57)—(8.60) determines the Landau level energy
spectra and the corresponding wave functions. We are interested only in the surface
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Fig. 8.21 (a) The lowest surface Landau levels of a TI film are shown at a film thickness of

. =30 A. For each n there are two LLs of the TI film, belonging to the two surfaces of the film.
(b) The electron density along the z axis for one of the n = 1 Landau levels and for different values
of the thickness, L, of the Bi;Se3 film. The numbers next to the lines are the values of L. The
magnetic field is at 15 Tesla

Landau levels. These Landau levels are separated from the bulk Landau levels by
finite energy gaps and the wave functions of the surface Landau levels are localized
near the surface of the topological insulator. We assume that the wave functions y,
satisfy open boundary conditions (zero values) at the two surfaces of the TI film,
which correspond to a suspended TI film. The substrate can be taken into account
by modification of the boundary conditions.

For a topological insulator film there are two surfaces which results in two sets
of surface Landau levels. For thick films the separation between the Landau levels
of the two surfaces is large and the levels with the same » are degenerate. The wave
functions of the surface Landau levels have a finite width and therefore for small
thicknesses of the films, the wave functions of the two surfaces of the BipSes film
overlap. This results in inter-Landau level coupling which lifts the degeneracy of
the Landau levels of the two surfaces. In Fig. 8.21(a) the lowest energy surface
Landau levels with indices n = 0 and n = 1 are shown for a Bi»Se3 topological
insulator film of thickness L, = 30 A. For each n there are two Landau levels of
the two surfaces of the film. The degeneracy of the Landau levels is lifted due to the
finite film thickness and the finite inter-Landau level coupling. This coupling is more
pronounced at a small film thickness due to the larger overlap of the corresponding
wave functions [Fig. 8.21(b)] where results for four film thicknesses are shown. For
small L., the wave functions of the two surface states have a large overlap and a
large value within the whole topological insulator film, which results in a strong
inter-Landau level coupling. For large L., the surface Landau levels are localized
at the two surfaces of the film, resulting in a weak inter-Landau level coupling. The
strong inter-Landau level coupling lifts the degeneracy of the surface Landau levels
and changes the corresponding wave functions. The most important effect is how
this coupling affects the contributions of the n and n — 1 non-relativistic Landau
functions, ¢u,m and @), —1,, (see (8.55)), to the Landau wave functions of the
surface states. For the n = 0 surface Landau level this is not important since only
n = 0 non-relativistic Landau functions enter in the expression (8.56), while for the
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Fig. 8.22 The electron densities p}":n(z) and p}"zo) (z) of two n = 1 Landau levels for film
thickness of L, =24 A. The black (solid and dotted) lines and blue (solid and dotted) lines corre-

spond to two n = 1 Landau levels. The densities pf"=1)(z) and pf”zo) (z) show the occupations of
the n = 1 and n = 0 non-relativistic Landau level functions, respectively

n = 1 surface state both the n = 1 and (n — 1) = 0 non-relativistic Landau functions
determine the properties of the topological insulator state. To show the effect of
the inter-Landau level coupling on the wave functions we present in Fig. 8.21 the
electron densities

g (8.61)
(8.62)

=1 3 2 4
PV =[x 2 @)+ 42 @)
=0 1 2 2
P @) =[x @) +[x2, @

which determine the contribution of the ng = 1 and ng = 0 non-relativistic Lan-
dau functions to the corresponding surface Landau levels. The results are shown in
Fig. 8.21(b) for two n = 1 surface Landau levels, which are coupled due to inter-
Landau level coupling. Figure 8.22 shows clearly that one of the n = 1 surface Lan-
dau levels has a larger contribution from the ny = 0 non-relativistic Landau function,
@no=0,m» while the other n = 1 surface Landau level has a large contribution from
the ng = 1 non-relativistic Landau function, ¢,y=1,.

With the known wave functions of the surface Landau levels (8.55)—(8.56), the
Haldane pseudopotentials, (8.2), can be readily evaluated from the following ex-
pression

2

yo=o) _ [ 44 V(g)F1.1(q)L2 a Lu(q?)e ™ (8.63)
m - 27[(’1 q)r1,1q) Ly, 2 m\q ’ :
0
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oodq 1 q2
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p) 2
+2F2(g)Ly, (%)Lnl (%)

2
+ Pa(g)L2, (%)}Lm(qz)e“’z, (8.64)
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Fig. 8.23 The ratios of pseudopotentials, (Vi/V3) (panel (a)) and (V3/Vs) (panel (b)), for the
surface Landau levels of a Bi,Se3 topological insulator at two odd relative angular momenta shown
as a function of the thickness of the topological insulator film. The ratios are shown for the n =0
and two n = 1 surface Landau levels of the topological insulator

for n > 0. Here the form factors F; j(q) are evaluated from,
Firi(q) = /dzldzzplﬁ"‘):”)(z1)p,§”°=")(zz)e*'“*zz'q,
Fl,z(q)=/dz1dzgp,(l”0:”)(zl)pr(l”():"—l)(zz)e—lm—zzlq’
F2,2(61)=/dzld@pr(l”ozn_])(Zl)pr(l"0="—1)(Zz)e—\m—zz\q’

where pi"™(2) = i’ @P + 1 @F and 07" V@ = 16" @P +
| X’(lz) (2) |2 determine the occupation of ng = n-th and ng = n — 1-th non-relativistic
LLs for the topological insulator surface Landau level with index ».

The mixture of surface Landau levels has a strong effect on the pseudopotentials,
which is visible only at a small thickness of the film and for n = 1 Landau levels
[see (8.63) and (8.64)]. The stability of the incompressible states (i.e., the gaps of
the FQHE states) depends on how fast the pseudopotentials decreases with increas-
ing relative angular momentum, m. In Fig. 8.23, the ratios of the two nearest odd
pseudopotentials, (V1/V3) and (V3/ Vs), are shown as the function of the thickness
of the film for the n = 0 and n = 1 surface Landau levels. For the n = 0 Landau
level the ratios of the pseudopotentials monotonically decrease with the thickness,
L. This monotonic dependence shows that the n = 0 surface Landau level does
not depend on the mixture of two surface states and the reduction is due to the in-
crease of the width of the surface wave functions in the z-direction [Fig. 8.21(b)].
For two n = 1 surface Landau levels there is a different dependence on the L. For
a small thickness the inter-Landau level coupling is large, which results in a strong
nonmonotonic dependence of the pseudopotential ratios on L. For one of the n = 1
Landau levels the pseudopotential ratios have a well pronounced maximum. For a
large thickness of the topological insulator film, the inter-Landau level coupling is
weak and the pseudopotentials monotonically decrease with L., which is similar to
that of the n = 0 Landau level and is due to the increase of the width of the surface
wave functions in the z-direction. For a large thickness of the topological insulator
film, the ratio of the first two pseudopotentials, V3/V}, becomes the same for all
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Fig. 8.24 (a) The v = 1 FQHE gap shown for different Landau levels of a topological insulator
film as a function of the film thickness. The FQHE gaps were evaluated numerically for a finite-size
system of N =9 electrons and flux quanta 25 = 24. (b) The v = % FQHE gap is shown for
different Landau levels of the topological insulator film as a function of the film thickness. The
FQHE gaps were evaluated numerically for a finite-size system of N = 10 electrons and the flux
quanta 25 = 21. The magnetic field is 15 Tesla and the energy is shown in units of the Coulomb
energy, ec = e2 /il

Landau levels. This fact suggests that for large L. (L, > 50 A) the FQHE gaps are
almost the same in the n =0 and n = 1 Landau levels.

With the known pseudopotentials the energy spectra of the v = % and v = %
FQHE systems are evaluated numerically in the spherical geometry. The corre-
sponding energy gaps are shown in Fig. 8.24(a) and (b), as a function of film thick-
ness [131]. The L, dependence of the energy gaps is very similar to the L, depen-
dence of the ratio of the pseudopotentials of the energy gaps at the corresponding
LLs (see Fig. 8.23). For a small thickness, the non-monotonic dependence for the
n =1 Landau levels is due to the inter-Landau mixture, while for a large thickness,
the FQHE gaps monotonically decrease with the thickness due to the increase of the
width in the z-direction of the surface wave functions. The FQHE gaps in the n = 1
and n = 0 Landau levels become almost the same for large thicknesses of the film.

Experimentally it would be easier to study the dependence of the FQHE gaps on
the parameters of the system for a given thickness of the film by varying the strength
of the external magnetic field. In Fig. 8.25, we show the dependence of the v = %
FQHE gap on the magnetic field for two different films with a small thickness,
L, =25 A, and a large thickness, L, = 50 A. The results presented in Figs. 8.24
and 8.25 are shown for actual values of the film thicknesses and the magnetic field.
Within the inter-Landau level mixture, the properties of the TI film are determined
by a dimensionless parameter which is the dimensionless thickness of the film, ex-
pressed in units of the magnetic length. Therefore with increasing magnetic field the
magnetic length decreases, and the dimensionless thickness increases. Then without
any inter-Landau mixture we would expect a monotonic decrease of the excitation
gaps with magnetic field due to the increase of the dimensionless width of the sur-
face wave functions. For the small thickness of 25 A, which is about two quintuple
layers of BirSes [Fig. 8.25(a)], the inter-Landau coupling is strong. As a result the
FQHE gap at one of the n = 1 Landau levels increases monotonically with magnetic
field, while the other n = 1 Landau level displays a monotonic decrease of the gap
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Fig. 8.25 The v = % FQHE gap as a function of the magnetic field shown for different Landau
levels of a topological insulator film: two n = 1 LLs (black lines) and one n = 0 LL (red line). The
thickness of the film is (a) L. =25 A and (b) L, = 50 A. The red arrows show the FQHE gaps in
the n =0 and n = 1 Landau levels of graphene. The FQHE gaps were evaluated numerically for a
finite-size system of N =9 electrons and flux quanta 2.5 = 24. The energy is shown in units of the
Coulomb energy, ec = 2 /i £

with magnetic field, B. An experimental observation of the monotonic increase of
the FQHE gaps with magnetic field would be a direct manifestation of the strong
inter-Landau level coupling.

For a large film thickness of 50 A, i.e., five quintuple layers of BiyTe3
[Fig. 8.25(b)], the inter-Landau level coupling is weak and we see a monotonic
decrease of the FQHE gaps with magnetic field for all Landau levels. This is due to
the increase of the dimensionless width of the surface Landau level wave functions.
For the n = 0 Landau levels, which are not affected by the Landau level coupling,
a monotonic decrease with magnetic field, B, is visible for both small and large
thicknesses of the film. The results shown in Fig. 8.25 also illustrate the fact that the
FQHE gaps in a topological insulator are less than the maximum FQHE gap that is
expected in graphene in the n = 1 Landau level.

The FQHE can indeed be observed on the surface Landau levels of a topologi-
cal insulator. The strength of the FQHE, which is characterized by the value of the
excitation gap, has non-trivial dependence on the thickness of the film. For a small
thickness of the topological insulator film, the inter-Landau level coupling and the
mixture of the Landau levels are strong, which results in a non-monotonic depen-
dence, with a well-pronounced maximum of the FQHE gaps on the thickness of the
film, in the n = 1 Landau levels. For a large thickness of the film, when the inter-
Landau level coupling is small, the FQHE gaps monotonically decrease with the
thickness, which is due to an increase of the width of the surface Landau levels. The
effect of the inter-Landau level coupling on the n = 0 surface states is very weak. As
a result, for the n = 0 Landau levels the FQHE gaps monotonically decrease with
the thickness for all values of L. In general, for a finite thickness of the topological
insulator films, the FQHE gaps are the largest in the n = 1 Landau levels, which is
similar to the case of a monolayer graphene. At a large enough thickness of the film,
L, > 50 A, the gaps of FQHE states in the n = 0 and n = 1 Landau levels become
comparable (Fig. 8.24). Experimental observation of these theoretical predictions,
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just as in the case of graphene [69, 72, 77] would be an important advancement in
our understanding of this unique state of matter. The possibility of a controllable
growth of the Bi>Se3 nanofilm in a wide range of one quintuple layer (10 A) to 15
quintuple layer (150 A) has been demonstrated in [132]. This indeed opens up the
interesting possibility to study the FQHE in BiSes films of different thicknesses.

8.6 Conclusions

We have briefly reviewed the rich physics exhibited by interacting electrons in
monolayer and bilayer graphene in the quantum Hall effect regime. The behavior
of massless Dirac fermions in monolayer graphene and massive chiral fermions in
bilayer graphene are distinctly different from the electron dynamics in traditional
two-dimensional electron systems. In bilayer graphene, we described in detail about
possible transitions from the fractional quantum Hall state to a compressible state
and back to the FQHE state in the same Landau level by simply tuning the band
gap at a given electron density. Similarly, we suggest the possibility of a FQHE—
no-FQHE—FQHE transition within a Landau level of bilayer graphene. These con-
trollable driven transitions are unique to bilayer graphene and do not exist in con-
ventional 2D electron systems. Experimental observation of these will provide a
rare glimpse into the properties of incompressible and compressible states in bi-
layer graphene. Incompressible states in trilayer graphene are also briefly discussed.
Novel states, such as the incompressible Pfaffian state at v = % are expected to be
present in bilayer graphene. Finally, we present a brief description of the properties
of FQHE states of Dirac fermions on the surface of a topological insulator.
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