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Strongly correlated systems is difficult:

 Analytically: non-perturbative, no obvious small parameters

 Numerically: Exponential wall: degree of freedom grows exponentially with system size

Weak Coupling Approach:  Suitable for weak-coupling systems
• Convert a many-body problem into single-body: mean field theory, density functional theory
Strong Coupling Approach: 
• keeps only a finite set of many-body basis: 
• Configuration interactions(CI), Coupled Cluster Expansion, QMC, Numerical RG.

1/37Brief history about tensor network state

AKLT authors(1987): prototype of matrix product state and honeycomb tensor-network

M. Fannes(1991): MPS in name of Finitely Correlated State (FCS), and Tree Tensor Network state (TTN)

 Niggemann: special TNS for honeycomb Heisenberg model, equivalence between exp. cal. and classical PF

 Sierra and Martin-Delgado: general wavefunction ansatz to study a quantum lattice model  

 Nishino: in name of Tensor Product State (TPS), general variational ansatz to study 3D classical model 

 Ostlund and Rommer (1995): DMRG (1992)’s wavefunction is a MPS, area law



Quantum Monte Carlo

• No dimension consideration
• Suffer from the “minus-sign” problem for 

fermion and frustrated spin system

Density Matrix Renormalization Group

• Best method for 1D quantum model 

• Violet area law

• 2D->1D, artificial long-range interaction

• Hope: extrapolation, even gapped case

A possible direction: Tensor Renormalization (TNS, TNM)

Why do we need tensor renormalization?
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• Projected Entangled Pair State (PEPS, 2004)
• Multi-scale Entanglement Renormalization Ansatz (MERA, 2007)
• Correlator Product State (CPS, 2009)
• Projected Entangled Pair State (PEPS, 2014)



Why renormalization is possible?

• Hilbert space is compressible:

Full Hilbert space:
Too large to study even to enumerate!

Relevant for physical QMB state: area law

Ref: D. Poulin, A. Qarry, R. Somma, F. Verstraete, Phys. Rev. Lett. 106, 170501 (2011)
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Dmin : Nmin of basis needed to describe the grdst (entanglement entropy) faithfully.

• (Boundary) Area Law in quantum information: for a gapped system with local H

env

sys

d = 1:  Dmin ~ const
d = 2:  Dmin ~ eL

About the corner: Area law of Entanglement Entropy

Ref: J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010).

•1D: local gapped Hamiltonian with only constant degeneracy of ground state
•Quasi-free (i.e., quadratic int) boson and fermion gapped Hamiltonian: in any D
•Known violation: 1D critical fermion has log correction, 2D critical fermion suggests log correction

1D critical XY chain (i.e., h<=2 in isotropic case, h=2 in anisotropic case)
•General belief: ground state of local gapped Hamiltonian obeys.
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 all statistical models with only local interactions can be represented as tensor-network models 

and effectively evaluated, defined on real lattice or dual lattice.

Tensor-network model in real lattice Ernst Ising
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Classical system: Tensor Network Model

Ref: H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai, and T. Xiang, Phys. Rev. B 81, 174411 (2010)
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Tensor network state provides a faithful representation of the ground state wavefunction of a quantum 
lattice model that satisfies the area law of the entanglement entropy. 

A kind of construction, e.g., PEPS:

Quantum lattice system: Tensor Network State (TNS)

parameterize
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 Area law: is believed to be a faithful representation of grdst of local gapped H.

 Formally has no sign problem, can encode fermion sign

 Can show power-law correlation function, at finite D

Real physical stateVirtual auxiliary state
Bond dimension (D)

Projected Entangled Pair State

1D case: Matrix Product State (MPS), or Tensor Train, DMRG wavefunction



Critical point accuracy:

Successful examples: Ising model on cubic lattice

former 
NRG

ZYXie, PRB 86, 045139 (2012)

SWang, et al,  CPL 31, 070503 (2014)
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alpha(+): 0.1023

alpha(-): 0.1137

gamma: 0.3295



Successful examples: Heisenberg model on square lattice

 spin-1/2 AF Heisenberg model on square lattice: PEPS 

S.R.White, et al,  Annu. Rev. CMP 3, 111(2012)

Note: 
iPEPS reference: VMC extrapolation in Sandvik PRB 56, 11678(1997)
DMRG reference: DMRG extrapolation in truncation error at given size.

DMRG: 
jumps fast as width(Ly) grows

PEPS:
improves as D grows 

Energy accuracy 
VS 

Cylinder width

6 > 4000
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PRB 90, 174201 (2014)

𝑃 𝐽 = 𝑝𝛿ଵ + (1 − 𝑝)𝛿ିଵ

Edward-Anderson model on square (with PBC) +

++

-
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• Additional parameters:

k=1, Na ~ 2300

k>1, Na ~ 2700 + 8k2

• ResNet parameters:
N ~ 400 + 2950*k 

+ (9.6*m-2.5)*104 *k2

m=63

m=45
m=27

m=8

m=18
m Layers Na / N Best testing error

4 28 0.63% 7.05%     ->    6.57%

8 52 0.31% 6.25% ->    5.71%

18 112 0.13% 5.81%     -> 5.57%

27 166 0.09% 5.55%     ->    4.99%

45 274 0.05% 5.25% ->    4.83%

63 382 0.04% 4.95%     ->    4.77%

m=4

Our group, to appear soon

k = 1: [ 16, 16*2, 32*2, 64*2 ]

Deep Learning: ResNet
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 Quantum lattice model: 

1. determine the tensor-network representation of targeted wave-function: time-evolution, energy minimization

Bottleneck 11/37

 Time evolution:

(1). Simple update (entanglement mean field approximation)

 Use the local entanglement spectra as effective environment

 local tree approximation which can be solved by SVD/HOSVD

(2). Full update (Global variation) 

Solve the linear equation iteratively                   

(3). Cluster update: 

Use small cluster and its mean field as effective environment

how to update/renormalize after a small evolution step 

Bond dimension: D2



 Quantum lattice model: 

1. determine the tensor-network representation of targeted wave-function: 

Bottleneck 12/37

 Energy minimization (global extremum problem): 

find a PEPS        which minimize the energy:

This can be done equivalently as an optimization problem 

which can be reduced to generalized eigenvalue problem 

Bond dimension: D2



Bond dimension: D2
Gr

Green: 
Red:
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 Renormalization: Compression of  DOF (real Hilbert space, or virtual space) by discarding the irrelevant

 Contraction of RTN with D2：seems unavoidable, the main bottleneck of all TRG methods!

Reduced Tensor Network

2. contract the network to get the expectation value 
Bottleneck



 Time Evolving Block Decimation(TEBD) / Boundary MPS

Target: effective MPS representation of the dominant eigenvector

 Power method with truncation: not variational!

Power method to get the fixed point:
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Dmps, denoted as χ

 In principle: We always need a curve of O(D), in which each point is obtained by χ-scaling (χ~D2).

Why do we need large D and large χ

Memory: D4χ2     

CPU: D6χ3   

D=10: 750M
D=13: 6G
D=20: 190G
D=25: 1.1T

A huge and terrible task!



Even though we can obtain wavefunction with very larger D
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We can only deal with small D when doing expectation value calculation

SRG:
D = 19:    E = -0.544410
D = 30:    E = -0.54442

Monte Carlo: 
E = -0.54454  (  20 )

AF Heisenberg model on honeycomb lattice
With U(1) symmetry
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3-state RVB wavefunction 
(J1-J2 AF Heisenberg model on square lattice): N = 256

can only deal 

HHZhao, et al, PRB 81, 174411 (2010) Shuo Yang, et al, PRL 118, 110504 (2017)



Especially for Fermion: Larger D

P. Corboz’s contribution:
PRL 113, 046402 (2014): t-J, D*=7
PRB 93, 045116 (2016): Hubbard, D*=8
Science 358, 1155 (2017): Hubbard, D*=8~9
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Short-range correlation in momentum space, 
long-range correlation in real space, 
more entanglement entropy

Fermi surface, BEC(Bose metal)



Even very strong misunderstanding, e.g.,

D<=6, in PRB 90, 064425 (2014)
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For Monte Carlo: Larger Size is important! 
Y. Iqbal, et al, arXiv: 1606.02255
T. Li, arXiv: 1601.02165

Finite size vs Thermodynamic limit
qualitatively different
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For TNS: Larger D is important! 

Gapped

Gapless

Which extrapolation is the correct one!
Gapped or gapless?
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Accept ? No! Some former efforts

Gr
Green: 
Red:

 Partial summation of the physical indices: Monte Carlo sampling 
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 Single-layer contraction: use only bra or ket, not their product.

Iztok Pižorn, et al, Phys. Rev. A 83, 052321 (2011)

Does not change the scaling
Accuracy is lost due to the sampling

Change the target
Accuracy is greatly lost

Phys. Rev. B 96, 85103 (2017)

Accuracy is lost

System size is limited



Nested Tensor Network: Dimension Reduction Technique

Gr

Memory: D4χ2       D2χ2

CPU: D6χ3        D3χ3

D: 10~13 25~30

Bond dimension: D

Green: 
Red:

Seems trivial, but the consequence is non-trivial:

Idea: physical indices are not summed over first, but remained and projected to the virtual plane  
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ZYXie, et al, PRB 96, 045128 (2017)

Does not change the target
Change the scaling essentially
Accuracy is actually improved by keeping larger χ



Validity Test: Some known state

spin-2 SSS on Kagome: D=3
E = 0,  M = 0

RVB state on KAFH: D=3
E = -0.393124(1) finite-size-scaling
E = -0.393123
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App1ication 1: Spin-1/2 Kagome anti-ferromagnetic Heisenberg (AFHK) model

Kaomge lattice

Valence bond crystal
Singh & Huse, PRB  2008 series expansion
Evenbly & Vidal, PRL  2010   MERA
Iqbal, Becca & Poilblanc, PRB 2011 VMC

Gapped spin liquid (Topological)
Jiang, Weng & Sheng, PRL 2008  DMRG
Yan, Huse & White, Science 2011 DMRG
Depenbrock, McCulloch & Schollwock, PRL 2012 DMRG
Jiang, Wang & Balents, Nature Physics 2012 DMRG
Gong, Zhu & Sheng, Scientific Reports 2014  DMRG
Li, arXiv:1601.02165 VMC
Mei, Chen, He & Wen,  arXiv:1606.09639 SU(2)-PESS

Gapless spin liquid (Algebra)
Hastings, PRB 2000
Ran,  Hermele, Lee & Wen, PRL 2007 VMC 
Iqbal, Becca, Sorella & Poilblanc, PRB 2013 VMC+Lanczos
Hu, Gong, Becca & Sheng, PRB 2015 VMC
Jiang, Kim, Han & Ran, arXiv:1610.02024  SU(2)-PEPS
He, Zaletel, Oshikawa & Pollmann, arXiv:1611.06238 DMRG

Experiment:
Nutron Scattering: tends gapless
T. H. Han, et al, Nature(2012).
NMR: gapped ~ [0.03, 0.07]
M.X.Fu, et al, Science(2016)

Herbertsmithite
ZnCu3(OH)6Cl2
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Generalization pair entanglement to simplex entanglement 
Projected entangled simplex states(PESS) ansatz

 Introduce a simplex tensor S: 

triangle/simplex entanglement, instead of pair

 defined on unfrustrated lattice: 

honeycomb, no hidden frustration here!

 A better representation for frustrated systems 

ZYXie, et al, PRX 4, 011025 (2014).

Simplex ~ possible building block, such as triangle for Kagome 
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Contraction



VBS (MERA and SE)

Gapless SL (VMC)

Published Result: with D up to 13

Gapped SL (HOCC)
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When RTN can not work: D = 24 e.g.

Energy: already exp. converged
Mag: only pow. converged,  need to increase χ
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Convergence Test: when RTN can be applied

This is important to ensure the convergence: X~D2

RTN: X~100
NTN: X~1000
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With the help of Nested Tensor Network
HJLiao, et al, PRL 118, 137202 (2017)

Gapless SL 
(VMC)

Gapped SL 
(HOCC)
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χ = 1500, impossible for RTNFormer memory cost: 1.1T~2.2T



-0.4379(3)

-0.4386(5)

U(1) DMRG extrap:

SU(2) DMRG extrap:
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Large D tells more: probably to be gapless

Scaling-Gap relation: (general belief)

Gapless/critical system: polynomial
Gapped system: exponential 
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 Full update (D~13), large cluster (D~15) does not change too much 



Husimi lattice
Comparison between Husimi and Kagome 

 At finite D, both of them are ordered, and behaves very similarly.
 At infinite D limit, Husimi is of no order, i.e., M = 0
 If Husimi Mag is still upper bound when D approaches infinity, then Kagome Mag should also vanish! 
 If there is no finite-D transition, then probably gapless.
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Ising model on square lattice: D = 30

Application 2: Ising model on cubic lattice

Motivation:
1. HOTRG works well in 3D

iTEBD should works better
2. Gain insight for quantum lattice model

(more efficient wavefunction update scheme)
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D = 4, x = 20
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D = 10, x = 160 (guaranteed to be very accurate)

Produce reliable tensor-network state result, probably the 1st time
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PESS wavewfunction ansatz is important
Can be improved by better update method

Z. Y. Liu, et al, in preparation
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Wavefunction-based method can also work well in 3D, if the wf ansatz is properly chosen



Summary

 Calculation of the wavefunction overlap (or inner product) is a central part of TRG for quantum lattice 

models, and also a main bottleneck of almost all TRG methods. 

 Nested Tensor Network method aims to solve the problem

• Idea: change the order of summation over the local tensors

• Memory: D2, computation: D3, accuracy: improved by much larger χ (10 times)  

 Critical 1: Anti-ferromagnetic Kagome Heisenberg Model: PESS wf

• More reliable grdst Energy: -0.43752(6), D=25, x=1500

• Finite D: q=0 ordered state, extrapolation: gapless SL E/M converge polynomially (U(1)-Dirac-fermion)

 Critical 2: Ising model on cubic lattice: PESS wf

• Produce reliable result for thermodynamic quantities (E, M): This is first!

• Obtain comparable Tc with other techniques, promising for better update, D=16
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Thanks!

Prof. Tao Xiang
IOPCAS, China

Prof. Bruce Normand
PSI, Switherland

Dr. Jing Chen
IOPCAS, China

Dr. Haijun Liao
IOPCAS, China

Dr. Zhiyuan Liu
ITPCAS, China

Main Collaborators in this talk:

Main Refs: ZYXie, H. J. Liao, R. Z. Huang, H. D. Xie, J. Chen, Z. Y. Liu, T. Xiang, Phys. Rev. B 96, 045128 (2017)

H. J. Liao, ZYXie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang, B. Normand, T. Xiang, Phys. Rev. Lett. 118, 137202 (2017)

ZYXie, J. Chen, J. F. Yu, X. Kong, B. Normand, T. Xiang, Phys. Rev. X 4, 011025 (2014)

Z. Y. Liu, ZYXie, T. Xiang, to appear



M. B. Hastings, Phys. Rev. B 69, 104431  (2004) .

E.H. Lieb, T.D. Schultz, and D.C. Mattis, Ann. Phys. 16, 407 (1961)



LSMH theorem:  SU(2) invariant Hamiltonian with odd-half-integer spin per 
unit cell, which implies following three cases:

• symmetry-breaking: goldstone mode

• Gaped spin liquid with degenerate ground states

• Gapless spin liquid

Lieb-Schultz-Mattis-Hasting Theorem

M. B. Hastings, Phys. Rev. B 69, 104431  (2004) .

E.H. Lieb, T.D. Schultz, and D.C. Mattis, Ann. Phys. 16, 407 (1961)



Some evidence of the scaling-gap relation

Husimi: 
each bond belongs to a single polygon/loop
much less frustrated, and much easier to study!

Kagome(p=3,q=2) Husimi
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1D: much evidence
2D: less evidence (due to small D), well believed

Simple argue band not rigorouse at all: 
for gapped system 

HJLiao, et al, PRB 93, 075154 (2016)



About the scaling-gap relation

Gapped SSS (trimerized, non-uniform)

Gapped SSS (uniform)
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HJLiao, et al, PRB 93, 075154 (2016)



Quasi-2D Example: About the scaling-gap relation

Gapless  SL 120o AF Neel Order

Just to mention:
S>2, always ordered 
Just like S=3/2(gapless)
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Seems like a stable phase: (-0.03, 0.04)

Supplementary Information: 
simple update with second neighbor coupling J2
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Unsuitable channel: always (q=0) ordered at finite D!                          
36-PESS
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