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We have proposed an efficient algorithm to calculate physical quantities in the translational in-
variant three-dimensional tensor networks, which is particularly relevant to the study of the three-
dimensional classical statistical models and the (2+1)-dimensional quantum lattice models. In the
context of a classical model, we determine the partition function by solving the dominant eigenvalue
problem of the transfer matrix, whose left and right dominant eigenvectors are represented by two
projected entangled simplex states. These two projected entangled simplex states are not hermitian
conjugate to each other but are appropriately arranged so that their inner product can be computed
much more efficiently than in the usual prescription. For the three-dimensional Ising model, the
calculated internal energy and spontaneous magnetization agree with the published results in the
literature. The possible improvement and extension to other models are also discussed.

I. INTRODUCTION

The many-body problem is one of the central prob-
lems in physics, and developing accurate and efficient
numerical methods that can effectively handle the ex-
ponential growth of the corresponding Hilbert space has
always been a great challenge, especially for quantum
systems. Based on the idea of renormalization group
as well as the tensor-network representation of partition
functions and wave functions, tensor-network methods
have evolved progressively to be an important member of
many-body computational methods in recent years [1–3].
In fact, due to the absence of sign problem and the ability
to deal with two-dimensional systems, tensor networks
are drawing increasing attention, and have been applied
successfully to strongly-correlated electron systems [4, 5],
frustrated spin systems [6–9], statistical models [10–12],
topological order [13–16], quantum field theory [17–19],
machine learning [20, 21], and even quantum circuit simu-
lation [22], etc. Among the various tensor-network meth-
ods, imaginary time evolution is a highly efficient method
to determine the ground state of low-dimensional quan-
tum systems [3, 23, 24].

A central task in the application of tensor network
states to 2+1 dimensional quantum lattice models, is
to contract a two-dimensional tensor network, which has
double-layer structure and bond dimension D2, with D
the maximal virtual bond dimension of the tensor net-
work representation of a quantum state [3]. This is ex-
tremely costly, and thus thoughD is expected to be larger
in order to give more accurate result, it is limited to
about 13 in practical calculations [9, 16, 25]. There are
some efforts in recent years to solve this problem, such as
employing symmetries [26, 27], combining Monte Carlo
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sampling [28], and the nested tensor network method
[29]. However, apparently the problem is not completely
solved, and developing efficient algorithms to resolve this
issue is still an important topic for tensor-network com-
munities.

At the meanwhile, it is known that, in the formalism
of path integral, the equilibrium quantum many-body
problem in d dimensions is similar to the classical many-
body problem in d+1 dimensions. Thus inspired by the
success in one- and two-dimensional quantum systems,
there are also some efforts of applying tensor-network
methods to three-dimensional (3D) classical models. Ac-
tually, both the coarse-graining tensor renormalization
group algorithms [10, 30–32] and the transfer-matrix-
based tensor-network state methods [33–39] have been
applied to these models or related previously. Though
the transfer-matrix-based methods can work excellently
in two-dimensional networks, it seems that they are not
so efficient in three dimensions. For example, the vari-
ational optimization procedure seems indispensable, and
bond dimension of the involved tensor-network states and
thus the accuracy are limited. Especially, as far as we
know, whether a simple algorithm analogous to imagi-
nary time evolution in two-dimensional quantum lattice
models can be developed for 3D classical models is un-
clear up to now.

In this work, we are trying to address the issues. To be
specific, following the usual prescription of the transfer-
matrix-based methods, we firstly express the partition
function of a 3D classical model in terms of some special
two-dimensional transfer matrices, and reduce the prob-
lem to the dominant eigenvalue problem of the matrices.
Then we solve the dominant eigenvalue problem by rep-
resenting the dominant eigenvector as a special tensor-
network state, namely the projected entangled simplex
state (PESS) [25], which is efficiently determined through
a power iteration procedure analogous to imaginary time
evolution, as done for two-dimensional classical models
similarly [40]. In particular, a simple nesting technique
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is proposed in which the PESS representations of the left
and right dominant eigenvectors are designed appropri-
rately so that their inner-product can be expressed as a
tensor network with bond dimension D instead of D2,
and thus the contraction can be carried out much more
efficiently. Combining this nesting technique with the
corner transfer matrix renormalization group (CTMRG)
algorithm [4, 41, 42], we are able to push the bond di-
mension D to 20 in this work. For the 3D Ising model, it
shows that even if the tensor network state is renormal-
ized by the so-called simple update technique [24, 25, 43]
after each evolution step, the obtained local quantities,
such as energy density and spontaneous magnetization,
are in good consistent with the previous studies, and
the estimated critical temperature Tc is about 4.5100(5)
which has only a relative deviation of about 10−4 from
the best Monte Carlo estimations.

The rest of the paper is organized as follows. In Sec. II,
we introduce some details of the algorithm employed in
this work, especially the nesting technique. The numeri-
cal results for statistical averages, such as energy density
E and spontaneous magnetization M , as well as the con-
vergence analysis, are presented in Sec. III. In Sec. IV, we
summarize our work, and discuss the possible improve-
ment and promising extensions briefly.

II. METHOD

A. Tensor-network representation of the partition
function

For concretness, hereinafter we will focus on the 3D
Ising model. The partition function can be written as

Z =
∑
{s}

∏
〈ij〉

eβsisj , (1)

where si = ±1 is the spin variable located on the i-th
lattice site, β is the inversed temperature, 〈ij〉 means
the product is performed over all the nearest neighboring
bonds, and the summation is over all the spin configura-
tions.

For later use, we regroup the product in Eq. (1) in unit
of cube that is the building block of a cubic lattice, i.e.,

Z =
∑
{s}

∏
α

T (α), (2)

where T (α) is a rank-8 tensor defined at the α-th cube.
E.g., as shown in right panel of Fig. 1, for a cube where
the spin variables residing on the eight vertices are de-
noted by s1-s8, the local tensor T can be expressed as
the following product of twelve Boltzmann weights cor-
responding to each edge of the cube, respectively,

Ts1s2s3s4s5s6s7s8
= exp [β(s1s2 + s2s3 + s3s4 + s4s1 + s5s6 + s6s7+

s7s8 + s8s5 + s1s5 + s2s6 + s3s7 + s4s8)] . (3)

𝑠1 𝑠2
𝑠4 𝑠3

𝑠5 𝑠6

𝑠8 𝑠7

FIG. 1. Special transfer matrices in the expression of partition
function of 3D Ising model. (left) The green and blue cubes
constitute transfer matrices T2 and T1, as expressed in Eq. (4)
and (5). (right) The definition of local tensor T located in
each colored cube, as expressed in Eq. (3). As mentioned
in the main text, the vertical direction is referred to as z-
direction for convenience.

.

Manifestly, to make Eq. (2) and (3) consistent, T
should be defined only in two kinds of inequivalent cubes,
as denoted as green and blue, respectively, in the left
panel of Fig. 1. Thus the two kinds of cubes form an alter-
native or staggered structure in vertical direction. This is
very similar to the case of the imaginary time evolution in
quantum lattice models, where the trotter-suzuki decom-
position of the evolution operator e−τH always leads to
an alternative structure in imaginary time τ -direction.
In the following, we will use this special structure ex-
tensively. For convenience, the vertical direction will be
refered to as z-direction hereinafter.

B. Determination of the tensor-network
representation of the dominant eigenvector

Following the prescription of the transfer-matrix-based
method, one need to express the partition function in
terms of some transfer matrices. To this end, we firstly
introduce two tensor-network operators

T1 =
⊗
α∈b

T (α), T2 =
⊗
α∈g

T (α), (4)

where the direct products are performed over T s defined
at blue cubes and green cubes, respectively, as illustrated
in Fig. 1. And then we can identify the following equality

Z = Tr (T2T1)
2n
, (5)

where the length in the z-direction is denoted as 2n for
convenience. It is worth noting that T1 and T2 should
be understood as matrices by grouping indices properly
in Eq. (4) and (5), in order to make the operations for
matrices therein meaningful.

Once Eq. (5) is established, the calculation of partition
function is immediately reduced to the dominant eigen-
value problem of the transfer matrix T2T1, which can
be solved by power iteration method and is very similar
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to the imaginary time evolution. In this work, we rep-
resent the corresponding dominant eigenvector |Ψ〉 as a
projected entangled simplex state [25, 44], which can be
written as

|Ψ〉 =
∑
{s}

Tr(...A
(α)
aαbαcαdα

B
(β)
aβbβcβdβ

P
(i)
aibi

[si]...)|...si...〉,

(6)
as illustrated in Fig. 2. Here α and β denotes the co-
ordinates of two inequivalent squares, at the center of
which a rank-4 simplex tensor A or B is introduced to
characterize the four-spin entanglement in that square.
i denotes the coordinates of lattice sites, where a rank-3
projection tensor P is defined with two virtual indices la-
beled as a, b, c... and a single physical index labeled as s.
Every two virtual indices associated with the same bond
take the same values. Tr is over all the repeated virtual
indices and

∑
is over all the spin configurations {s}.

A

B

P

FIG. 2. Tensor network representation of the dominant eigen-
vector of the transfer matrix T2T1 appeared in Eq. (5), as
formulated in Eq. (6). The black vertical lines denote the
physical configurations {s} appeared in Eq. (6).

Due to the similar alternative structure to the time-
evlution operators in quantum lattice models, we can
take the same strategy to determine the variational pa-
rameters A, B, and P in |Ψ〉. To be specific, starting
from a random state |Ψ0〉 which has the same structure
as |Ψ〉, we apply T1 and T2 alternatively to |Ψ0〉 and
update the parameters accordingly by local decomposi-
tions of the related clusters after each projection. This
procedure is applied repeatedly until the convergence is
reached, and the obtained tensor network state provides
an approximate representation of |Ψ〉. In essence, the
method described here is equivalent to the simple up-
date method [24, 25, 43] developed in quantum systems,
and has been applied to two-dimensional classical mod-
els under the help of canonical form of matrix product
state [40]. Fig. 3 illustrates how a single projection step
is performed. For more details, we suggest referring to
Ref. [25].

d
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c
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a' b'
𝑠𝑙

𝑠𝑗s𝑖

𝑠𝑘

λ𝐵,𝑎 λ𝐵,𝑏

λ𝐵,𝑐λ𝐵,𝑑
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d
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c
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FIG. 3. A single projection step of T on the PESS ansatz, as
described in the main text. The positive definite vector λB

is obtained from the higher-order singular value decomposi-
tion of the B tensor. For more details, one can refer to the
elaboration in Ref. [25].

C. Nesting structure of inner product between the
left and right dominant eigenvectors

To describe the nesting technique developed in this
work, firstly we briefly descrbie how the statistical aver-
ages are obtained in the traditional reduced tensor net-
work method [3, 29]. As long as the dominant eigenvector
|Ψ〉 is obtained, we can use the fundamental formula to
calculate the statistical averages of local physical quanti-
ties. E.g., the average magnetization located at i-th site
can be determined by

Mi =

∑
{s} si

∏
α T

(α)∑
{s}

∏
α T

(α)
=

Tr(T2T1)nsi(T2T1)n

Tr(T2T1)n(T2T1)n
, (7)

where we have used the transfer-matrix expression of Z
and assumed that si sits in the middle of z-direction. In
the thermodynamic limit, n→∞, and we reach

Mi =
〈Ψ′|si|Ψ〉
〈Ψ′|Ψ〉

, M =

∑
i∈αMi

8
, (8)

where 〈Ψ′| is the left dominant eigenvector of T2T1 and
can be derived easily due to the symmetry between T1
and T2. The spontaneous magnetization M is obtained
eventually as above by averaging over the eight spins in
the same cube due to the translational invariance of the
tensor networks. Internal energy E of the bonds lying
in xy-planes can be obtained similarly, while for bonds
in z-direction, we can follow the widely-used impurity
method as discussed in Refs. [26, 43, 45].

As indicated explicitly in Eq. (8), the statistical av-
erage of a local physical quantity needs to contract a
two-dimensional tensor network, which is identical to the
expectation value calculation for quantum lattice models



4

in essence. If |Ψ〉 has bond dimension D, then the gener-
ated two-dimensional tensor network has dimension D2,
as shown in Fig. 4, and can be contracted by the CTMRG
algorithm [4, 41, 42] effectively, when D is small.

=

𝑇𝑎

A

B

𝑖𝑖′ 𝑗𝑗′

𝑘𝑘′𝑙𝑙′

𝑖 𝑗

𝑘𝑙

𝑖′ 𝑗′

𝑘′𝑙′

Q

P

P

𝑇𝑏

=

𝑖𝑖′ 𝑗𝑗′
𝑖 𝑗

𝑖′ 𝑗′
=

𝑖𝑖′ 𝑗𝑗′

𝑘𝑘′𝑙𝑙′

B

A

𝑖 𝑗

𝑘𝑙

𝑖′ 𝑗′

𝑘′𝑙′

FIG. 4. Sketch of 〈Ψ′|Ψ〉 appeared in Eq. (8). Here 〈Ψ′| is
the left dominant eigenvector of T2T1. The relevance to |Ψ〉
and thus the structure of the local tensors T a and T b, come
from the symmetry between T1 and T2.

However, contracting a two-dimensional tensor net-
work with bond dimensionD2 is extremely costly whenD
is large, and thus one can use the nested tensor network
technique [29] to improve the efficiency of conventional
contraction methods. Nevertheless, in this work, we did
not take this strategy, instead, we proposed a much sim-
pler nesting technique by taking advantage of the special
cubic lattice structure. This nesting technique can re-
duce the computational cost similarly as achieved by the
nested tensor network method, keeps the symmetry of
the ground state properly, and is especially suitable for
cubic systems.

To see how it works, we firstly divide the cubic lattice
into three parts, namely two bulks whose contribution to
the full partition function can be expressed in terms of
transfer matrices, and the surface part which connects
the two bulks and combines as the whole cubic lattice.
This means we have rewritten the partition function in
another manner, as illustrated in Fig. 5(a),

Z = Tr(T4T3)nXV Y (T2T1)n, (9)

where T1 and T2 are the transfer matrices corresponding
to the lower bulk, T3 and T4 correspond to the upper
bulk similarly, and X, Y , V are auxilliary matrices to
describe the surface part. Here we intentionally decom-
pose the lower and upper part in different manners, and
their relative locations projected in xy-plane are shown
in Fig. 5(b). Mathematically,

X =
∏
〈ij〉t 6∈g

eβsisj , Y =
∏
〈ij〉b 6∈o

eβsisj , V =
∏
〈ij〉bt

eβsisj ,

(10)
which are explicitly shown in Fig. 5(a). Here X and Y
can be understood as onsite diagonal matrices, 〈ij〉t 6∈ g

means the product is over the nearest spin pairs between
green cubes on the top surface of lower bulk, and 〈ij〉b 6∈ o
means the product is over the nearest spin pairs between
orange cubes at the bottom surface of upper bulk. 〈ij〉bt
means V is the product of Boltzmann weights corre-
sponding to all the bonds connecting the two bulks in
z-direction. In Fig. 5(a), the dashed bonds correspond-
ing to X, Y , and V , are denoted as black, blue, and red,
respectively. Note in Eq. (9), the size in z-direction is
assumed as 2n+1 for convenience.

(a) (b)

FIG. 5. Decomposition of the cubic lattice into three parts,
as described in the nesting technique in Sec. II. (a) The cubes
with color blue, green, orange and grey, constitute the trans-
fer matrices T1, T2, T3, and T4, respectively. The dashed lines
with color black, blue, and red, constitute the transfer matri-
ces X, Y , and V , respectively. The full partition function
can be represented in terms of these transfer matrices, as ex-
pressed in Eq. (9). (b) The spatial distribution of the cubes
in xy-plane, for the sixteen cubes shown in (a).

In the thermodynamic limit, the evaluation of Eq. (9)
is again reduced to the dominant eigenvalue problem as
before, and the statistical averages can be determined
similarly. For example, the bond energy in z-direction
can be obtained by

Ep =
〈Φ|XV ′Y |Ψ〉
〈Φ|XV Y |Ψ〉

, V ′ = (−sasbeβsasb)
∏

〈ij〉bt 6=p

eβsisj ,

(11)
where 〈Φ| is the left dominant eigenvector of T4T3, and
V ′ differs from V by only a single vertical bond denoted
as p with sa and sb located at its ends. Finally we have

Ep =
〈Φ̃|V ′|Ψ̃〉
〈Φ̃|V |Ψ̃〉

, 〈Φ̃| ≡ 〈Φ|X, |Ψ̃〉 ≡ Y |Ψ〉, (12)

The key observation is that 〈Φ̃| and |Ψ̃〉 have similar
structure but the parameters are distributed separately
in space, which can be seen from Fig. 5(b) straight-
forwardly. And this leads to a great advantage, i.e.,
if the wavefunctions 〈Φ̃| and |Ψ̃〉 are approximated by
PESS with bond dimension D, then the generated two-
dimensional tensor network has also bond dimension D,
instead of D2. E.g., as to the denorminator, exploring
the symmetry between 〈Φ̃| and |Ψ̃〉, the resulting tensor
network are composed of three paramters, i.e., the orig-
inal parameters A, B in |Ψ̃〉 and |Φ̃〉, and a new local
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tensor T p derived from P therein, i.e.,

T pijkl =
∑
sasb

Plj [sa]Pki[sb]e
βsasb , (13)

as illustrated in Fig. 6. Therefore, compared with
the reduced method which generates a tensor network
with squared bond dimension, this nesting technique can
greatly reduce the cost and leads to much more efficient
contraction, as achieved in Ref. [29] similarly. In this
work, we push D to 20 with the help of this technique.

=

𝑖 𝑗

𝑘𝑙
𝑖

𝑙

𝑘

𝑗

𝑇𝑝
𝑠𝑎
𝑠𝑏

P

P

𝑠𝑎

𝑠𝑏

P

P

𝑖

𝑗

𝑘

𝑙
=

𝑖 𝑗

𝑘𝑙

𝑇𝑝

FIG. 6. Schetch of 〈Φ̃|V |Ψ̃〉 appeared in Eq. (12). The virtual

bonds in 〈Φ̃| and |Ψ̃〉 are indicated as solid black and dashed
green lines, respectively. Here we have used the symmetry
between the two wavefunctions, and both the two definitions
of T p hold, as expressed in Eq. (13), though it is unnecessary.

The tensors A, B and P are the parameters in |Ψ̃〉 in this
context. Clearly the bond dimension of the resulting tensor
network is not squared which is different from the case in
Fig. 4.

III. RESULTS

In this work, we focus on the 3D Ising model, which
is of long-standing interest in statistical physics and con-
densed matter physics. Though there is no analytical
solution as in two-dimensional case, the higher-order ten-
sor renormalization group (HOTRG) [10, 46] and Monte
Carlo methods [47–50] have provided very accurate nu-
merical data which confirms a second-order finite temper-
ature phase transition. Therefore, this model provides a
suitable touchstone to test new numerical algorithms in
higher dimensions.

In this work, as described in Sec. II, we use the devel-
oped evolution method combined with the simple update
technique to determine the tensor-network representation
of the dominant eigenvectors of the transfer matrices. For
D > 10, we employ the nesting technique described in
Sec. II C to improve the efficiency of CTMRG algorithm.

The result of internal energy E is shown in Fig. 7. The
reference curve denotes the data from HOTRG calcula-
tion with D = 14, which gives very consistent specific
heat with the well-accepted Monte Carlo data in the lit-
erature, as shown in Ref. [10]. It seems that the proposed
method can give consistent result off the critical region,

while near the critical point, enlarging the bond dimen-
sion D can produce more accurate result as expected.
The spontaneous magnetization M shows similar behav-
ior, as shown in Fig. 8, where the reference curve is ob-
tained from Monte Carlo [47]. For both the two quanti-
ties, our result coincides well with previous studies, and
the singular behavior can be seen clearly.

4 . 0 4 . 2 4 . 4 4 . 6 4 . 8 5 . 0

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

E

T

 H O T R G
 D = 1 0
 D = 2 0

4 . 4 6 4 . 4 8 4 . 5 0 4 . 5 2 4 . 5 4

� � � �

� � � �

FIG. 7. Energy estimation obtained from D = 20 and χ =
120. The HOTRG data from Ref. [10] withD = 14 are plotted
as a reference.

4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6
0 . 0

0 . 2

0 . 4

0 . 6

M

T

 M o n t e  C a r l o
 D = 1 0
 D = 2 0

4 . 4 8 4 . 4 9 4 . 5 0 4 . 5 1
0 . 0

0 . 1

0 . 2

0 . 3

FIG. 8. Magnetization estimation obtained from D = 20 and
χ = 120. The Monte Carlo data from Ref. [47] are plotted as
a reference.

From E and M , and the critical temperatures de-
rived as shown in Fig. 9, it seems that the proposed
method tends to underestimate the critical temperature
a little bit, which is different from the coarse-graining
tensor renormalizaton group methods as shown, e.g., in
Refs. [10, 51]. This is probably related to the simple
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update technique used in the evolution process, since it
essentially provides a Bethe lattice approximation of the
dominant eigenvector [52, 53] and thus tends to be dis-
ordered at finite temperature, especially at temperature
close to but lower than critical point where the approx-
imation cannot give a good estimate of the correlation
length. When D = 20, the estimated critical tempera-
ture Tc is about 4.5100(5), which has only about 10−4

relative deviation from the best estimation Tc ∼ 4.51152
[10, 46, 50].

5 1 0 1 5 2 0
4 . 5 0 8

4 . 5 0 9

4 . 5 1 0

T c

D

 T c

FIG. 9. Critical temperature obtained from the magnetiza-
tion M , with respect to the bond dimension D of the tensor
network state representation of the transfer matrices’ domi-
nant eigenvectors.

As to the new nesting technique proposed in this work,
its convergence with respect to the bond dimension χ of
the environment tensors used in CTMRG is shown in
Fig. 10, for D = 20. It shows that for all the three
typical temperatures ranging from symmetry-breaking
phase to paramagnetic phase, the convergence is at least
equally satisfying, compared with the nested tensor net-
work method proposed in Ref. [29]. Particularly, even at
temperature that is very close to the critical value, the
convergence is already very acceptable when χ = 180 for
D = 20, with an error about 10−6 for E and 10−4 for M .
This is a very nice feature for tensor-network methods,
especially for large D, as discussed in Ref. [29] in detail.

IV. SUMMARY

In this paper, we propose an efficient numerical method
to contract the 3D tensor networks with translational in-
variance. The result of the contraction is expressed in
terms of some transfer matrices, whose dominant eigen-
vectors are represented as the PESS form and determined
by power iterations analogous to the imaginary time evo-
lution algorithm [23, 40]. Especially, the PESS represen-

4 0 8 0 1 2 0 1 6 0

 � � � � �


 � � � � �

 � � � � �


 � � � � �


 � � 	 � �


 � � 	 � �


 � � 	 � �

E

χ

 4 . 4 5
 4 . 5 0 8
 4 . 6

4 0 8 0 1 2 0 1 6 0
0

0 . 0 0 4

0 . 1 7

0 . 1 8

0 . 1 9
0 . 4 1 6
0 . 4 2

M

χ

 4 . 4 5
 4 . 5 0 8
 4 . 6

FIG. 10. Convergence analysis about energy and magneti-
zation for D = 20. Three typical temperatures are chosen,
i.e., temperature in symmetry-breaking phase (4.45), close to
critical point (4.508), and in disordered phase (4.6).

tations of the left and right dominant eigenvectors are
designed appropriately so that their inner-product has a
nesting structure and can be expressed as a tensor net-
work with bond dimension D instead of D2, and thus the
contraction can be carried out much more efficiently. As
to the 3D Ising model, it can give very consistent result
for both energy and magnetization with previous stud-
ies, even the simple update strategy is employed to up-
date the tensor network states. The convergency of the
nesting technique is shown to be at least equally good
to that of the nested tensor network method [29]. When
D = 20, we obtain a critical temperature about 4.5100(5)
which is very close to the best known estimation. As far
as we know, this is probably the first successful trial of
applying the imaginary-time-evlution-like method to 3D
classical models without variational update procedure,
and thus extend the application scope of tensor network
states. The applications to other interesting but unsolv-
able classical models in three dimensions, such as Potts
model [46], clock model [54], dimer model [38], and lattice
gauge models [55], are straightforward.

As mentioned in Sec. III, the simple update strategy
employed in this work is probably a reason why the ob-
tained Tc tends to be underestimated. Besides the scal-
ing hypothesis and data collapse technique [39], this ten-
dency could be eased in two different manners. One is
to resort to the more involved but more accurate update
methods, such as the cluster update [56] and the full up-
date strategies [57, 58], which consider renormalization
effect of the environment better. The other possbile way
is to utilize more sophisticated ansatz and evolution tech-
niques, such as PESS ansatz with stronger simplex entan-
glement [25], the recently proposed regularized scheme of
time evolution [59], and the so-called minimal canonical
form of tensor network states [60], all of which are also
expected to produce more accurate representation of the
dominant eigenvectors. In both cases, the nesting tech-
nique proposed in this work can still be applied without



7

change, and the improvement of performance can be ex-
pected arguably.

At last, it is worth mentioning that the proposed nest-
ing technique in this work can be also extended to the
two-dimensional quantum lattice models. In order to
achieve this, one need to represent the partition function
in a different manner, e.g., similarly as we have done in
Eq. (9), so that two representations of the ground state
with separated distributions in space can be used simul-
taneously, e.g., as illustrated in Fig. 5(b) and expressed in
Eq. (12). This can be advantageous in the study of mod-
els which have square structure and separatable block
interactions, such as Shastry-Sutherland model [6, 61],
checkboard system [62], and so on. Exploring its poten-
tial and limit is an interesing and promising topic, and

we would like to leave it as a future pursuit.
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