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By the extensive tensor network algorithms, the J1–J2 3-state clock model is investigated. We focus on the case of
J1 > 0, J2 < 0, in which the double-peak structure appears in the curve of the specific heat Cv versus the temperature T.
The four parameters J2 ¼ �0:2;�0:8;�1:4;�2 are chosen for the detailed numerical simulation in unit of J1 = 1. The
mismatch of peak position between entanglement entropy (EE) and Cv suggests the existence of two Berezinskii–
Kosterlitz–Thouless (BKT) phase transitions in case of J2 ¼ �0:2;�0:8, where the peaks of EE lie inbetween the double
peaks of Cv. In the case of J2 = −1.4, the first-peak temperature of Cv and of EE are very close. With further increasing
of ∣J2∣, the sequence of the first peak swaps, i.e., the first peak of EE arises at a lower temperature than of Cv. We believe
that there is a critical ∣J2∣, above which the first peak of Cv does not correspond to the BKT phase transition. The location
offset of the second peak between EE and Cv becomes smaller with ∣J2∣ increasing. In addition, the double-peak structure
of the specific heat still holds when ∣J2∣ is large enough.

1. Introduction

Onsager’s rigorous solution1) of the two-dimensional Ising
model provided the deep insight about the phase transition.
The q-state clock model or Potts model are the natural
generalization of Ising model. q optional spin states at each
site enrich the phase transition greatly. In the case of q ¼ 2, it
is exactly Ising model demonstrating the phase transition
driven by the symmetry breaking, being of Landau–Ginzburg
type.2) When q > 43) on the square lattice, the ferromagnetic
clock system experiences two BKT4,5) transitions exihibiting
the topological feature, beyond Landau’s paradigm.

Besides the nearest-neighbor (NN) interaction, the intro-
duction of the next-nearest-neighbor (NNN) interaction
diversifies the above general Ising model further. The
competition between the configuration entropy, especially
due to the interplay of the NN and NNN interactions, and the
internal energy renders the rich phase diagram.

In this article, we will address the J1–J2 3-state clock
model, and the Hamiltonian reads as

H ¼ J1
X
hiji

cos �ij þ J2
X
hhijii

cos �ij: ð1Þ

Here, �ij � �i � �j, and J1; J2 refer to the coupling strength
inbetween the NN pair, and the NNN pair, respectively. At
each site �i ¼ 2�ki=3, with ki ¼ 0; 1; 2.

In what follows, we will focus on the case of J1 > 0,
J2 < 0. For convenience, J1 is set as 1 favoring the super
anti-ferromagnetic (AF) order in NN pair. To be specific, the
NN pair tends to take the different k. There are three
combinations: ð01; 12; 02Þ, in which the energy from the NN
bond is equivalent. The NNN pair favors the ferromagnetic
alignment. Although the research is free from the frustration,
there are strongly degenerate configurations. Figure 1 is the
typical one with the super antiferromagnetic order, relevant to
the broken-sublattice-symmetry (BSS) state:6) one sublattice
is broken into one spin state, and the other sublattice take the
random distribution from the other two spin states.

In the case of J2 ¼ 0, the configuration shown in Fig. 1
corresponds to the ground state. Thus there exists the
extensive entropy, i.e., S ¼ ð1=2Þ ln 2. Our check on the
specific heat and the entanglement entropy do not show any
singularity in the finite temperature, conforming to the

rigorous solution from Baxter.7) Once the negative J2 is
switched on, no matter how small, in the low temperature
limit, the option in the red circle will become unique other
than the two possibilities (k ¼ 1; 2) in Fig. 1. Negative J2
will not induce any frustration for the super AF order that
the positive J1 favors. On the contrary, J2 < 0 enhance the
partial order as shown in Fig. 1. In the low temperature limit,
we have the ground state energy Eg ¼ �J1 þ 2J2. In the high
temperature limit, all the configurations share the same
Boltzmann weight. As a result, the entropy per site S equals
ln 3.

The previous research about the J1–J2 3-state (Potts or
clock) on the square lattice include the renormalization group
treatment,8–10) Monte-Carlo (MC) simulation6,11–13) and level
spectroscopy method.14) First, the results from the renorm-
alization group are as follow: Cardy9) claimed the existence
of two phase transitions with a critical line of continuously
varying exponent η. den Nijs et al. demonstrated the critical
fan with an infinite-order transition crossing the lower
boundary into the disordered phase for some fixed parame-
ters. Oliveira et al. showed the existence of the three fixed
points separating the phase diagram into three regions: ferro-,
antiferro-, and para-magnetic phases, and the system flows
to antiferromagnetic or paramagnetic phase away from the
semistable fixed point ðt�1 ; t�2 Þ ¼ ð�0:375; 0:150Þ (q ¼ 3

Potts). Second, concerning the numerical simulations, by
MC, Grest et al. showed the two successive phase transitions:
from AF to BSS phase, and to paramagnetic phase in high
temperature, however, Ono claimed the occurence of

00

0

0

00

0 0

0 0

0 0

0

1/2

1/2 1/2 1/2

1/2 1/2

1/21/2

1/2 1/2 1/2

1/2

Fig. 1. (Color online) The configuration with the partial order. The option
0 form the stable stripe order along the black dash diagonal line, the sites
along the adjacant diagonal line hold two possibilities, which renders
S ¼ ð1=2Þ ln 2.
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Berezinskii–Kosterlitz–Thouless (BKT) phase transitions by
the estimation of the critical exponent η. Combining the
level-spectroscopy method and transfer matrices, Otsuka
et al. demonstrated the two BKT lines embracing a critical
region, beyond which there are ordered (upward) and
disordered (downward) phases respectively. The comparison
about the methods and the main conclusions is listed in
Table I. Most of the research suggested the BKT phase
transition. Our recent research3) by the tensor renormalization
group15) (TRG) provided exact and satisfactory results about
the BKT criticality of two-dimensional q-state clock model.
Hereafter, we adopt TRG to investigate this model. As far as
we know, it is the first try.

For any classical statistical model with the local inter-
actions, the partition function can be expressed as the
contraction of the tensor network.16) The tensor network
algorithms bring the remarkable breakthrough in the numer-
ical simulations, no matter whether in the intractable quantum
spin liquid issue,17,18) or in the spin class problem.19) We
exploit the relevant corner transfer matrix method20–23) to
calculate the physical observables: the free energy (F), energy
(E), thermal entropy (S), the specific heat (Cv), and the local
structure factor (S�;�), which are used to explore the phase
transition behaviors of the J1–J2 3-state model on the square
lattice. In particular, we calculate the entanglement entropy
(SE) of the original and dual lattice. The comparison of the
peak location inbetween Cv and SE provide an extra
perspective for the understanding for the phase transition.

The article is organized as follows. In Sect. 2, we
introduce the tensor network and representations about the
original and dual lattice, by which the physical observables
are obtained. The temperature dependence of the double-peak
specific heat and the observables are demonstrated and
studied. By the entanglement spectrum of the converged
matrix product state during the transfer matrix renormaliza-
tion group, we calculate the entanglement entropy. The peak
location of Cv and SE are compared. Finally, we go to the
conclusion in Sect. 3.

2. Numerical Results

The duality embedded in the construction of the transfer
matrix24) applys to our tensor initialization. The variables of
the original lattice is the angle θ located on the lattice site,
while the counterpart is the angle difference defined on the
bond connecting the nearest neighbour pair (so called the
dual lattice).3,25)

First, in the original lattice, there are two types of tensor
unit: A and B. As is shown in the left panel of Fig. 2, the
whole tensor network exhibits the periodicity with the unit
cell 2 � 2 (enclosed by the red dash line).26) The partition
function is expressed as

Z ¼
X
f�g

e��Hðf�gÞ ¼ Trð. . .ABBA . . .Þ; ð2Þ

where the sum takes over all configurations labelled by f�g,
and the tensor A and B read as

Alrud ¼ exp½��J1ðcos �lu þ cos �ur þ cos �rd þ cos �dlÞ=2�
� exp½��J2ðcos �lr þ cos �udÞ�;

Blrud ¼ �lrud ¼
1; l ¼ r ¼ u ¼ d

0; others

�
: ð3Þ

Here, l; r; u; d are the tensor indices emitting from the site
A; B.

Second, the unit tensor in the dual lattice referring to the
right panel of Fig. 2 is defined as

��1;�2;�3;�4 ¼ expf��J1ðcos �1 þ cos �2 þ cos �3 þ cos �4Þ=2
þ J2ðcosð�1 þ �2Þ þ cosð�3 þ �4ÞÞg: ð4Þ

Here, �i equals the angle difference at two ends of the bond
anticlockwise. The directional corner transfer matrix meth-
od23) is used to contract the tensor network in the dual lattice.
The corner transfer matrix renormalization group (CTMRG)
algorithm20–22) is applied to the original lattice network. The
physical quantities can be calculated by the “impurity”
method.27)

Table I. Comparison of results in previous works.

References Methods Results

Cardy9) renormalization group a sequence of two infinite-order BKT phase transitions

den Nijs et al.10) phenomelogical renormalization
group

a critical fan in which the infinite-order phase transition occurs

Oliveira et al.8) real-space renormalization group there exist three fixed points separating the phase diagram into three regions: ferro-, antiferro-, and
para-magnetic phases

Grest and Banavar6) MC simulation two phase transitions: successively from AF phase with sixfold degeneracy to BSS phase, and to
paramagnetic phase in high temperature

Ono11,12) MC simulation the occurrence of the BKT phase transition

Otsuka et al.14) dual sine-Gordon Lagrangian,
level-spectroscopy method

There exists a critical region bounded by two BKT lines ending at ðJ1=T; J2=TÞ ¼
ð0; logð1 þ ffiffiffi

3
p ÞÞ. The ordered phase lies above the upper BKT line, and the disordered phase

lies below the lower BKT line
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Fig. 2. (Color online) The tensor network and the related tensor
representation (left panel). Two As and Bs form the the unit cell (enclosed
by the red dash line); The dual lattice shown by dotted line with the tensor
unit ��1 ;�2 ;�3 ;�4 (right panel). Here, �1 ¼ �1 � �4 along the anti-clockwise
direction, and �s denote the angles of the original lattice sites.
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Utilizing the local unit cell in the original lattice, the
structure factor is defined as

Sq ¼ 1

2

X
m≠n

expðiq � ðrm � rnÞÞ cosð�m � �nÞ: ð5Þ

Here, Sq is not a global structure factor, but a local observable
provided that the translational invariance is preserved. Here,
rm means the position vector of the m-th site in the unit cell
(m; n ¼ 1; 2; 3; 4) and the prefactor 1=2 is used to avoid the
double counting. According to the definition of the magnet-
ization M for the BSS state, M takes 1 for any configuration
in Fig. 1, corresponding to the perfect partial order. Sð�;�Þ can
also be used to roughly observe the perfect partial order,
and takes the maximum value 4 [see Fig. 3(d)] in the
low temperature limit in case of J2 < 0, referring to the
configuration with one certain value out of ð1; 2Þ for the sites
along the yellow dash diagonal lines as shown in Fig. 1.

In the meanwhile, the internal energy per site takes the
minimum value �J1 þ 2J2, i.e., Eg ¼ �1:4 in the case of
J2 ¼ �0:2. As is shown in Fig. 3, the free energy and Sð�;�Þ
decrease with the temperature increasing, and the internal
energy and the entropy take the other way around. In the low
temperature limit, the nonzero J2 will break the extensive

entropy. As a result, the entropy S ¼ 0 holds, and the free
energy is equivalent to the internal energy, i.e., F ¼ E ¼
�1:4.

Concerning the analytical similarity of the curves between
the internal energy and Sð�;�Þ versus the temperature, we take
the derivative with respect to the temperature for the further
observation. As is shown in Fig. 4, the singularity of Cv and
dSð�;�Þ=dT are located at the same temperature.

Moreover, the entanglement entropy (EE) is found to be an
effective signal to locate the phase transition.28) By the EE,
the critical temperatures of the BKT phase transition in clock-
q model are accurately determined.3) The Kramers–Wannier
transformation29) related to the duality leads to the exchange
of the low and high temperature phases, due to which we
calculate the EE in the original and dual lattice. The peaks of
the EE help us to pin down the critical points.

Figure 5 demonstrates the singularities of the EE with
different J2 couplings. The different kept dimension D ¼
100; 120; 200 indicates the convergency. The peak location
pins down the critical point in the low temperature from the
dual lattice calculation. Combining the numerical simulations
in the original lattice, the critical point in the high temper-
ature is also determined. The critical temperatures are listed
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Fig. 3. (Color online) The temperature dependence of the physical
quantities: the free energy (F ), the internal energy (E ), the thermal entropy
(S ), and the local structure factor Sð�;�Þ. Here, J2 ¼ �0:2, D ¼ 60.
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in Table II, in which the middle two columns refer to the
peak location of Cv. As is shown in the upper panel of Fig. 6,
the peaks of the SE lie in between the peaks of Cv, which is a
typical characteristic of the BKT phase transition. Referring
to the data in Table II, we find that the case of J2 ¼ �0:2 lies
in the critical region in the phase diagram in Ref. 14,
however, J2 ¼ �0:8 case lies below and close to the lower
BKT boundary line. The cases of J2 ¼ �1:4;�2 are further
away from the lower BKT boundary line and lie in the
disordered region in Fig. 2 of Ref. 14. Our numerical
simulations suggest a higher upper limit of jJ2j for the
occurrence of the BKT phase transition in unit of J1 ¼ 1.

In the sense of the partial order, J1 ¼ 1 favors the super
anti-ferromagnetic configuration in the NN pair. Nonzero J2
induces the double-peak structure in the specific heat, as
shown in Fig. 6. With jJ2j increasing, the peaks shift towards
the high temperature. In the limit jJ2j ! 1, the system is
decoupled into two ferromagnetic clock-3 model, same to the
case with J1 ¼ �1, J2 ¼ 0, where the rigorous critical
temperature Tc ¼ 3=ð2 lnð ffiffiffi

3
p þ 1ÞÞ � 1:49246. The rigorous

value can be obtained by the duality from the transfer matrix
treatment,24,30) or from the tensor construction of the original
and dual lattice.25)

Do the two peaks meet11) each other finally? We further
calculate more cases with larger jJ2j ¼ 4; 6; 8; 10. The
double-peak structure of Cv still holds, as shown in Fig. 7.
Unexpectedly the temperature difference of the two peaks
even does not change significantly with jJ2j increasing. Thus
we do not think that the two peaks will merge at finitely large
jJ2j. Once jJ2j goes to infinity, the system is decoupled to

two independent ferromagnetic clock-3 model. The scaled
critical temperature Tc=jJ2j in case of jJ2j ¼ 10 is close to the
exact value mentioned above. Note that the fist peak of SE
occurs at a lower temperature compared to Cv in these large
jJ2j cases. It indicates that there is a change about the phase
nature when jJ2j increases further. The more research is
needed for the observation.

3. Conclusion

In summary, we investigate the partial order in the classical
J1–J2 clock-3 model. J1 > 0 favors the situation that the NN
pair takes different k. In the low temperature regime, J2 < 0

lock down the order in the black square shown in Fig. 1. S�;�
is the local structure factor for observing the partial order, and
we find that dS�;�=dT and Cv keep similar singularity.

There exhibits the double-peak structure in the specific
heat. For the small jJ2j, we check the partial order at low
temperature region. By the calculation from the original and
dual lattice, the critical points are accurately determined by
the singularity of the entanglement entropy. The numerical
data is listed in Table II. The mismatch, with two peaks of SE
lie between the two peaks of Cv, suggests the BKT phase
transition. The first peak of SE becomes to lie before the first
peak of Cv with jJ2j increasing, which indicates the change of
the phase transition nature.

For the larger jJ2j, the singularity of the Cv curve moves to
the higher temperature. In our calculation, the double peak
structure of Cv still holds when jJ2j ¼ 10. The temperature
difference of the two Cv peaks keeps almost unchanged with
jJ2j increasing, not even in the sense of the unit scaled by
jJ2j.

However, limited to the precision of the numerical
simulations in the neighborhood of the critical points, the
scaling analysis is absent, as a result, we have not determined
the critical exponent. The strongly degenerated configura-
tions bring the instability in the numerical simulation. As we
observe, the sequence swap of the first peak of SE and of Cv

indicates the existence of the upper limit of jJ2j for the BKT
phase transition. Then what are the upper and lower critical
values of jJ2j as concerns the low temperature BKT phase
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Table II. The temperature corresponding to the two peaks of the specific
heat and the entanglement entropy in the cases of J2 ¼ �0:2;�0:8;�1:4;�2.
T Cv, SE SE1 Cv1 Cv2 SE2J2

−0.2 0.3910(1) 0.3509(1) 1.1541(1) 0.8403(1)
−0.8 1.5035(1) 1.457(1) 2.0722(1) 1.9502(1)
−1.4 2.5359(1) 2.530(1) 3.044(1) 2.9601(1)
−2 3.5300(1) 3.530(1) 4.009(1) 3.9501(1)
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transition? It is on the way for the further exploration,
including but not limited to: the larger D, the crosscheck with
the other tensor algorithms, and the extraction of the
criticality and university.3,26)
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